formula that defines a detrended linear model, use \(z_{st}\)~1.
data
SpatialPointsDataFrame: should contain the spatio-temporal dependent variable, independent variables (statics and/or dynamics), spatial coordinates and the time as an integer or numerical variable.
n.neigh
number of nearest observations that should be used for a rbf.st
prediction, where nearest is defined in terms of the spatio-temporal locations
C
numeric; associated to time factor, we recommend using the parameter found by
minimizing the root-mean-square prediction errors using cross-validation. Using idwST.cv and optimize
factor.p
numeric; specify the inverse distance weighting power (p is the exponent that influences the weighting or optimal smoothing parameter)
progress
whether a progress bar shall be printed for spatio-temporal inverse-distance weighted function; default=TRUE
Value
returns the RMSPE value
References
Melo, C. E. (2012). Analisis geoestadistico espacio tiempo basado en distancias y splines con
aplicaciones. PhD. Thesis. Universitat de Barcelona. 276 p. [link]