The CAR model is:
Normal(Mu, Sigma), Sigma = (I - rho * C)^-1 * M * tau^2,
where I is the identity matrix, rho is a spatial autocorrelation parameter, C is a connectivity matrix, and M * tau^2 is a diagonal matrix with conditional variances on the diagonal. tau^2 is a (scalar) scale parameter.
In the WCAR specification, C is the row-standardized version of A. This means that the non-zero elements of A will be converted to 1/N_i where N_i is the number of neighbors for the ith site (obtained using Matrix::rowSums(A). The conditional variances (on the diagonal of M * tau^2), are also proportional to 1/N_i.
The ACAR specification is from Cressie, Perrin and Thomas-Agnon (2005); also see Cressie and Wikle (2011, p. 188) and Donegan (2021).
The DCAR specification is inverse distance-based, and requires the user provide a (sparse) distance matrix instead of a binary adjacency matrix. (For A, provide a symmetric matrix of distances, not inverse distances!) Internally, non-zero elements of A will be converted to: d_{ij} = (a_{ij} + gamma)^(-k) (Cliff and Ord 1981, p. 144; Donegan 2021). Default values are k=1 and gamma=0. Following Cressie (2015), these values will be scaled (divided) by their maximum value. For further details, see the DCAR_A specification in Donegan (2021).
For inverse-distance weighting schemes, see Cliff and Ord (1981); for distance-based CAR specifications, see Cressie (2015 [1993]), Haining and Li (2020), and Donegan (2021).
Details on CAR model specifications can be found in Table 1 of Donegan (2021).