Learn R Programming

⚠️There's a newer version (2.0.8) of this package.Take me there.

geostatsp (version 1.7.8)

Geostatistical Modelling with Likelihood and Bayes

Description

Geostatistical modelling facilities using Raster and SpatialPoints objects are provided. Non-Gaussian models are fit using INLA, and Gaussian geostatistical models use Maximum Likelihood Estimation. For details see Brown (2015) .

Copy Link

Version

Install

install.packages('geostatsp')

Monthly Downloads

521

Version

1.7.8

License

GPL

Maintainer

Patrick Brown

Last Published

April 16th, 2019

Functions in geostatsp (1.7.8)

wheat

Mercer and Hall wheat yield data
lgm-methods

Linear Geostatistical Models
pcPriorRange

PC prior for range parameter
likfitLgm

Likelihood Based Parameter Estimation for Gaussian Random Fields
stackRasterList

Converts a list of rasters, possibly with different projections and resolutions, to a single raster stack.
asImRaster

Convert a raster to an im object
profLlgm

Joint confidence regions
conditionalGmrf

Conditional distribution of GMRF
postExp

Exponentiate posterior quantiles
excProb

Exceedance probabilities
maternGmrfPrec

Precision matrix for a Matern spatial correlation
swissRainR

Raster of Swiss rain data
variog

Compute Empirical Variograms and Permutation Envelopes
RFsimulate

Simulation of Random Fields
spatialRoc

Sensitivity and specificity
squareRaster-methods

Create a raster with square cells
loaloa

Loaloa prevalence data from 197 village surveys
glgm-methods

Generalized Linear Geostatistical Models
gambiaUTM

Gambia data
simLgcp

Simulate a log-Gaussian Cox process
murder

Murder locations
matern

Evaluate the Matern correlation function
inla.models

Valid models in INLA
rongelapUTM

Rongelap data
krigeLgm

Spatial prediction, or Kriging
swissRain

Swiss rainfall data