#classical data to symbolic data
classic2sym(iris)
classic2sym(mtcars, groupby = "kmeans", k = 10)
classic2sym(iris, groupby = "hclust", k = 7)
classic2sym(iris, groupby = "Species")
x1<-runif(10, -30, -10)
y1<-runif(10, -10, 30)
x2<-runif(10, -5, 5)
y2<-runif(10, 10, 50)
x3<-runif(10, -50, 30)
y3<-runif(10, 31, 60)
d<-data.frame(min1=x1,max1=y1,min2=x2,max2=y2,min3=x3,max3=y3)
classic2sym(d,groupby="customize",minData=d[,c(1,3,5)],maxData=d[,c(2,4,6)])
classic2sym(d,groupby="customize",minData=d$min1,maxData=d$min2)
#example for build modal data
#for the first modal data proportion
a1 <- runif(10, 0,0.4) %>% round(digits = 1)
a2 <- runif(10, 0,0.4) %>% round(digits = 1)
#for the second modal data proportion
b1 <- runif(10, 0,0.4) %>% round(digits = 1)
b2 <- runif(10, 0,0.4) %>% round(digits = 1)
#for interval-valued data
c1 <- runif(10, 10, 20) %>% round(digits = 0)
c2 <- runif(10, -50, -10) %>% round(digits = 0)
#build simulated data
d <- data.frame(a1 = a1, a2 = a2, a3 = 1-(a1+a2),
c1 = c1, c2 = c2,
b1 = b1, b2 = b2, b3 = 1-(b1+b2))
#transformation
classic2sym(d, groupby = "customize",
minData = d$c2,
maxData = d$c1,
modalData = list(1:3, 6:8))#two modal data
#extract the data
symObj<-classic2sym(iris)
symObj$intervalData #interval data
symObj$rawData #raw data
symObj$clusterResult #cluster result
symObj$statisticsDF #statistics
Run the code above in your browser using DataLab