Last chance! 50% off unlimited learning
Sale ends in
VPC plot
pmx_plot_vpc(
ctr,
type,
idv,
obs,
pi,
ci,
rug,
bin,
is.legend,
sim_blq,
dname,
filter,
strat.facet,
facets,
strat.color,
trans,
pmxgpar,
labels,
axis.title,
axis.text,
ranges,
is.smooth,
smooth,
is.band,
band,
is.draft,
draft,
is.identity_line,
identity_line,
scale_x_log10,
scale_y_log10,
color.scales,
is.footnote,
...
)
ggplot2 or list of ggplot2 objects
pmx controller
charcater
can be either percentile or scatter
chracater
individual variable
pmx_vpc_obs
object observation layer pmx_vpc_obs
pmx_vpc_pi
object percentile layer pmx_vpc_pi
pmx_vpc_ci
object confidence interval layer pmx_vpc_ci
pmx_vpc_rug
object rug layer pmx_vpc_rug.
Note: consider not using a rug layer when bin[["within_strat"]]=TRUE,
since the rugs plotted will not reflect the bins.
pmx_vpc_bin
object pmx_vpc_bin specify within pmx_plot_vpc() e.g.: bin = pmx_vpc_bin(style = "kmeans", n = 10)
logical
if TRUE add legend
logical
if TRUE uses sim_blq values for plotting. Only for Monolix 2018 and later.
added for compatibility with other ggPMX plots
pmx_update parameters
expression
filter which will be applied to plotting data.
formula
optional stratification parameter by facetting.
This split plot by strats(each strat in a facet)
list
facet_wrap parameters.
character
optional stratification parameter by grouping.
This will split the plot by group (color) of strat.
character
define the transformation to apply on x or y or both variables
a object of class pmx_gpar possibly the output of the
pmx_gpar: Shared basic graphics parameters
list
list containing plot and/or axis labels: title, subtitle, x , y
list
containing element_text attributes to customize
the axis title. (similar to ggplot2 axis.title theme)
list
containing element_text attributes to customize
the axis text (similar to ggplot2 axis.text theme)
list
limits of x/y ranges
logical
if set to TRUE add smooth layer
list
geom_smooth graphical/smoothing fun parameters
logical
if TRUE add horizontal band
list
horizontal band parameters. geom_hline graphical parameters.
logical
if TRUE add draft layer
list
draft layer parameters. geom_text graphical parameters.
logical
if TRUE add an identity line
list
geom_abline graphical parameters.
logical
if TRUE use log10 scale for x axis.
logical
if TRUE use log10 scale for y axis.
list
define scales parameter in case of strat.color pmx_settings
logical
if TRUE add footnote
others graphics parameters passed :
pmx_gpar
internal function to customize shared graphical parameters
pmx_vpc
pmx vpc object.
pmx_update
function.
pmx_vpc parameters
You can use pmx_vpc_bin to set the bin parameters. In case of stratification,
binning can be different for each strat level (case within_strat
equal to FALSE).
Other vpc:
pmx_vpc_bin()
,
pmx_vpc_ci()
,
pmx_vpc_obs()
,
pmx_vpc_pi()
,
pmx_vpc_rug()
,
pmx_vpc()
# \donttest{
library(ggPMX)
theo_path <- file.path(
system.file(package = "ggPMX"), "testdata",
"theophylline"
)
WORK_DIR <- file.path(theo_path, "Monolix")
input_file <- file.path(theo_path, "data_pk.csv")
vpc_file <- file.path(theo_path, "sim.csv")
ctr <- pmx_mlx(
config = "standing",
directory = WORK_DIR,
input = input_file,
dv = "Y",
dvid = "dvid",
cats = c("SEX"),
conts = c("WT0", "AGE0"),
strats = "STUD",
settings = pmx_settings(
use.labels=TRUE,
cats.labels=list(
SEX=c("0"="Male","1"="Female")
)
),
sim = pmx_sim(
file = vpc_file,
irun ="rep",
idv="TIME"
)
)
ctr %>% pmx_plot_vpc(
strat.facet=~SEX,
facets=list(nrow=2),
type="percentile",
is.draft = FALSE,
pi = pmx_vpc_pi(interval = c(0.1,0.9),
median=list(color="green"),
extreme= list(color="green")),
obs = pmx_vpc_obs(color="blue",shape=18,size=2),
ci = pmx_vpc_ci(interval = c(0.1,0.9),
median=list(fill="pink")),
bin=pmx_vpc_bin("kmeans",n=5)
)
ctr %>%
pmx_plot_vpc(bin= pmx_vpc_bin(
style = "fixed",
fixedBreaks=c(-10,2, 5, 10,15,50))
)
# example with legend
ctr %>% pmx_plot_vpc(
is.legend = TRUE,
pi = pmx_vpc_pi(interval=c(0.02,0.98),median = list(linetype="dotted")),
ci = pmx_vpc_ci(interval = c(0.05,0.95),median=list(fill="red"))
)
# }
Run the code above in your browser using DataLab