This creates an ETA covariance matrix which can be used to define the co-relation between the parameters and its shrinkage..
eta_cov(
labels,
type = c("cats", "conts"),
dname = NULL,
show.correl = TRUE,
correl = NULL,
facets = NULL,
point = NULL,
covariates = NULL,
is.strat.color = FALSE,
...
)
eta_cov
object
list of texts/titles used within the plot
box for cats or conts
name of dataset to be used
logical
if TRUE add correlation to the plot
list
correl geom text graphical parameter
list
facetting graphical parameter
list
geom point graphical parameter
pmxCOVObject
pmx_cov
logical
if `TRUE` use a different color for the spline stratification.
others graphics arguments passed to pmx_gpar
internal object.
labels is a list that contains:
title: plot title default "EBE vs. covariates"
x: x axis label default to "Etas"
y: y axis label default to empty
Other plot_pmx:
distrib()
,
eta_pairs()
,
individual()
,
plot_pmx.distrib()
,
plot_pmx.eta_cov()
,
plot_pmx.eta_pairs()
,
plot_pmx.individual()
,
plot_pmx.pmx_dens()
,
plot_pmx.pmx_qq()
,
plot_pmx.residual()
,
plot_pmx_gpar_real()
,
plot_pmx()