Learn R Programming

ggRandomForests (version 1.0.0)

iris_interaction: Edgar Anderson's Iris Data

Description

A cached object constructed from the randomForestSRC::find.interaction function for the Iris data set. The randomForestSRC regression forest is stored in the iris_rf object.

Arguments

format

rdata matrix from randomForestSRC::find.interaction

Details

For ggRandomForests examples and tests, as well as streamlining the R CMD CHECK for package release, we cache the computationally expensive operations from the randomForestSRC package.

To test the interaction plots, we build a regression randomForest (iris_rf) with the iris measurements data, then run the randomForestSRC::find.interaction function to determine pairwise variable interaction measures.

The iris_interation "data set" is a cache of the randomForestSRC::find.interaction function, which measures pairwise interactions between variables from the iris_rf random forest model.

This famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, and Species.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole. (has iris3 as iris.)

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II, 179-188.

Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2-5.

Ishwaran H. and Kogalur U.B. (2014). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.5.4.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R. R News 7(2), 25-31.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests. Ann. Appl. Statist. 2(3), 841-860.

Examples

Run this code
load(iris_rf, package="ggRandomForests)
iris_interaction <- find.interaction(iris_rf)

plot(iris_interaction)

Run the code above in your browser using DataLab