randomForestSRC::find.interaction
function
for the Iris data set. The randomForestSRC regression forest is stored in the
iris_rf
object.randomForestSRC::find.interaction
To test the interaction plots, we build a regression randomForest (iris_rf
)
with the iris
measurements data, then run the randomForestSRC::find.interaction
function to determine pairwise variable interaction measures.
The iris_interation "data set" is a cache of the randomForestSRC::find.interaction
function, which
measures pairwise interactions between variables from the iris_rf
random
forest model.
This famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.
iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, and Species.
Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II, 179-188.
Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2-5.
Ishwaran H. and Kogalur U.B. (2014). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.5.4.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R. R News 7(2), 25-31.
Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests. Ann. Appl. Statist. 2(3), 841-860.
load(iris_rf, package="ggRandomForests)
iris_interaction <- find.interaction(iris_rf)
plot(iris_interaction)
Run the code above in your browser using DataLab