Learn R Programming

ggRandomForests (version 1.0.0)

plot.gg_interaction: plot.gg_interaction Plot a gg_interaction object,

Description

plot.gg_interaction Plot a gg_interaction object,

Usage

## S3 method for class 'gg_interaction':
plot(x, x_var, color = "black", ...)

Arguments

x
gg_interaction object created from a randomForestSRC::rfsrc object
x_var
variable (or list of variables) of interest.
color
point color (default "black")
...
arguments passed to the gg_interaction function.

Value

  • ggplot object

References

Breiman L. (2001). Random forests, Machine Learning, 45:5-32.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Ishwaran H. and Kogalur U.B. (2013). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.4.

See Also

plot.gg_interaction randomForestSRC::rfsrc randomForestSRC::find.interaction randomForestSRC::max.subtree randomForestSRC::var.select randomForestSRC::vimp

Examples

Run this code
#' ## Examples from randomForestSRC package...
## ------------------------------------------------------------
## find interactions, classification setting
## ------------------------------------------------------------
## iris.obj <- rfsrc(Species ~., data = iris)
## TODO: VIMP interactions not handled yet....
## find.interaction(iris.obj, method = "vimp", nrep = 3)
## iris_interaction <- find.interaction(iris.obj)
data(iris_interaction, package="ggRandomForests")
gg_int <- gg_interaction(iris_interaction)

plot(gg_int, x_var="Petal.Width")
plot(gg_int, x_var="Petal.Length")

## ------------------------------------------------------------
## find interactions, regression setting
## ------------------------------------------------------------
## airq.obj <- rfsrc(Ozone ~ ., data = airquality)
##
## TODO: VIMP interactions not handled yet....
## find.interaction(airq.obj, method = "vimp", nrep = 3)
## airq_interaction <- find.interaction(airq.obj)
data(airq_interaction, package="ggRandomForests")
gg_int <- gg_interaction(airq_interaction)

plot(gg_int, x_var="Temp")
plot(gg_int, x_var="Solar.R")

## ------------------------------------------------------------
## find interactions, survival setting
## ------------------------------------------------------------
## data(pbc, package = "randomForestSRC")
## pbc.obj <- rfsrc(Surv(days,status) ~ ., pbc, nsplit = 10)
## pbc_interaction <- find.interaction(pbc.obj, nvar = 8)
data(pbc_interaction, package="ggRandomForests")
gg_int <- gg_interaction(pbc_interaction)

plot(gg_int, x_var="bili")
plot(gg_int, x_var="copper")

Run the code above in your browser using DataLab