randomForestSRC::var.select
minimal depth variable selection from the Iris dataset.randomForestSRC::var.select
function for the randomForestSRC::rfsrc
classification
forest for the Iris data set.This famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.
iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, and Species.
randomForestSRC::var.select
object for the iris classification random forestFisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II, 179-188.
Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2-5.
Ishwaran H. and Kogalur U.B. (2014). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.5.4.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R. R News 7(2), 25-31.
Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests. Ann. Appl. Statist. 2(3), 841-860.
randomForestSRC::var.select
randomForestSRC::rfsrc
iris
iris_vs <- var.select(Species ~ ., iris)
plot.gg_interaction(iris_vs)
Run the code above in your browser using DataLab