Learn R Programming

ggRandomForests (version 1.1.1)

iris_vs: randomForestSRC::var.select minimal depth variable selection from the Iris dataset.

Description

A minimal depth variable selection object constructed by the randomForestSRC::var.select function for the randomForestSRC::rfsrc classification forest for the Iris data set.

This famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, and Species.

Arguments

format

A randomForestSRC::var.select object for the iris classification random forest

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole. (has iris3 as iris.)

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II, 179-188.

Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2-5.

Ishwaran H. and Kogalur U.B. (2014). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.5.4.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R. R News 7(2), 25-31.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests. Ann. Appl. Statist. 2(3), 841-860.

See Also

randomForestSRC::var.select randomForestSRC::rfsrc iris

Examples

Run this code
iris_vs <- var.select(Species ~ ., iris)

plot.gg_interaction(iris_vs)

Run the code above in your browser using DataLab