Learn R Programming

ggRandomForests (version 1.1.1)

veteran_prtl: A randomForestSRC::plot.variable object.

Description

A cached object from randomForestSRC::plot.variable function for the veteran data randomForestSRC::rfsrc survival forest veteran_rf.

Arguments

format

randomForestSRC::plot.variable object for survival

Details

For ggRandomForests examples and tests, as well as streamlining the R CMD CHECK for package release, we cache the computationally expensive operations from the randomForestSRC package.

This "data set" is a cache of the randomForestSRC::plot.variable function, with partial=TRUE for the "age" variable. The data is then a risk adjusted variable dependence curve from the veteran_rf random forest model.

We build a survival randomForest (veteran_rf) with the veteran data set, then run the plot.variable function to generate the data for constructing partial dependence plots.

References

Kalbfleisch J. and Prentice R, (1980) The Statistical Analysis of Failure Time Data. New York: Wiley.

Ishwaran H. and Kogalur U.B. (2014). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.5.4.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R. R News 7(2), 25-31.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests. Ann. Appl. Statist. 2(3), 841-860.

See Also

veteran plot.variable rfsrc veteran_rf

Examples

Run this code
## veteran data
## randomized trial of two treatment regimens for lung cancer
data(veteran, package = "randomForestSRC")
veteran_rf <- rfsrc(Surv(time, status) ~ ., data = veteran, ntree = 100)
veteran_prtl <- plot.variable(veteran_rf, surv.type = "surv",
                              partial = TRUE, time=30, xvar.names = "age",
                              show.plots=FALSE)
gg_dta <- gg_partial(veteran_prtl)
plot(gg_dta)

Run the code above in your browser using DataLab