Learn R Programming

ggRandomForests (version 1.1.2)

gg_partial: Partial variable dependence object

Description

The randomForestSRC::plot.variable function returns a list of either marginal variable dependance or partial variable dependence data from a randomForestSRC::rfsrc object. The gg_partial function formulates the randomForestSRC::plot.variable output for partial plots (where partial=TRUE) into a data object for creation of partial dependence plots using the plot.gg_partial function.

Partial variable dependence plots are the risk adjusted estimates of the specified response as a function of a single covariate, possibly subsetted on other covariates.

Usage

gg_partial.ggRandomForests(object, named, ...)

Arguments

object
the partial variable dependence data object from randomForestSRC::plot.variable function
named
optional column for merging multiple plots together
...
optional arguments

Value

  • gg_partial object. A data.frame or list of data.frames corresponding the variables contained within the randomForestSRC::plot.variable output.

References

Friedman, Jerome H. 2000. "Greedy Function Approximation: A Gradient Boosting Machine." Annals of Statistics 29: 1189-1232.

See Also

plot.gg_partial randomForestSRC::plot.variable

Examples

Run this code
## ------------------------------------------------------------
## classification
## ------------------------------------------------------------

## iris "Petal.Width" partial dependence plot
##
# rfsrc_iris <- rfsrc(Species ~., data = iris)
# partial_iris <- plot.variable(rfsrc_iris, xvar.names = "Petal.Width",
#                            partial=TRUE)
data(partial_iris, package="ggRandomForests")

gg_dta <- gg_partial(partial_iris)
plot(gg_dta)

## ------------------------------------------------------------
## regression
## ------------------------------------------------------------

## airquality "Wind" partial dependence plot
##
# rfsrc_airq <- rfsrc(Ozone ~ ., data = airquality)
# partial_airq <- plot.variable(rfsrc_airq, xvar.names = "Wind",
#                            partial=TRUE, show.plot=FALSE)
data(partial_airq, package="ggRandomForests")

gg_dta <- gg_partial(partial_airq)
plot(gg_dta)

## ------------------------------------------------------------
## survival examples
## ------------------------------------------------------------
## survival "age" partial variable dependence plot
##
# data(veteran, package = "randomForestSRC")
# rfsrc_veteran <- rfsrc(Surv(time,status)~., veteran, nsplit = 10, ntree = 100)
#
## 30 day partial plot for age
# partial_veteran <- plot.variable(rfsrc_veteran, surv.type = "surv",
#                               partial = TRUE, time=30,
#                               xvar.names = "age",
#                               show.plots=FALSE)
data(partial_veteran, package="ggRandomForests")

gg_dta <- gg_partial(partial_veteran[[1]])
plot(gg_dta)

Run the code above in your browser using DataLab