Learn R Programming

ggRandomForests (version 1.2.1)

plot.gg_rfsrc: Predicted response plot from a gg_rfsrc object.

Description

Plot the predicted response from a gg_rfsrc object, the rfsrc prediction, using the OOB prediction from the forest.

Usage

## S3 method for class 'gg_rfsrc':
plot(x, ...)

Arguments

x
gg_rfsrc object created from a rfsrc object
...
arguments passed to gg_rfsrc.

Value

  • ggplot object

References

Breiman L. (2001). Random forests, Machine Learning, 45:5-32.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Ishwaran H. and Kogalur U.B. (2013). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.4.

See Also

gg_rfsrc rfsrc

Examples

Run this code
## ------------------------------------------------------------
## classification example
## ------------------------------------------------------------
## -------- iris data
# rfsrc_iris <- rfsrc(Species ~ ., data = iris)
data(rfsrc_iris, package="ggRandomForests")
gg_dta<- gg_rfsrc(rfsrc_iris)

plot.gg_rfsrc(gg_dta)

## ------------------------------------------------------------
## Regression example
## ------------------------------------------------------------
## -------- air quality data
# rfsrc_airq <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute")
data(rfsrc_airq, package="ggRandomForests")
gg_dta<- gg_rfsrc(rfsrc_airq)

plot.gg_rfsrc(gg_dta)

## -------- Boston data
data(rfsrc_Boston, package="ggRandomForests")
plot.gg_rfsrc(rfsrc_Boston) 

## -------- mtcars data
data(rfsrc_mtcars, package="ggRandomForests")
gg_dta<- gg_rfsrc(rfsrc_mtcars)

plot.gg_rfsrc(gg_dta)

## ------------------------------------------------------------
## Survival example
## ------------------------------------------------------------
## -------- veteran data
## randomized trial of two treatment regimens for lung cancer
# data(veteran, package = "randomForestSRC")
# rfsrc_veteran <- rfsrc(Surv(time, status) ~ ., data = veteran, ntree = 100)
data(rfsrc_veteran, package = "ggRandomForests")
gg_dta <- gg_rfsrc(rfsrc_veteran)
plot(gg_dta)

gg_dta <- gg_rfsrc(rfsrc_veteran, conf.int=.95)
plot(gg_dta)

gg_dta <- gg_rfsrc(rfsrc_veteran, by="trt")
plot(gg_dta)

## -------- pbc data
data(rfsrc_pbc, package = "ggRandomForests")
gg_dta <- gg_rfsrc(rfsrc_pbc)
plot(gg_dta)

gg_dta <- gg_rfsrc(rfsrc_pbc, conf.int=.95)
plot(gg_dta)

gg_dta <- gg_rfsrc(rfsrc_pbc, by="treatment")
plot(gg_dta)

Run the code above in your browser using DataLab