
Last chance! 50% off unlimited learning
Sale ends in
## S3 method for class 'GRanges':
geom_alignment(data, ..., xlab, ylab, main, facets = NULL, stat =
c("stepping", "identity"), range.geom = c("rect",
"arrowrect"), gap.geom = c("chevron", "arrow",
"segment"), rect.height = NULL, group.selfish = TRUE,
label = TRUE)## S3 method for class 'TxDbOREnsDb':
geom_alignment(data, ..., which, columns = c("tx_id", "tx_name",
"gene_id"), names.expr = "tx_name", facets = NULL,
truncate.gaps = FALSE, truncate.fun = NULL, ratio =
0.0025)
## S3 method for class 'GRangesList':
geom_alignment(data, ..., which = NULL,
cds.rect.h = 0.25,
exon.rect.h = cds.rect.h,
utr.rect.h = cds.rect.h/2,
xlab, ylab, main,
facets = NULL, geom = "alignment",
stat = c("identity", "reduce"),
range.geom = "rect",
gap.geom = "arrow",
utr.geom = "rect",
names.expr = NULL,
label = TRUE,
label.color = "gray40",
arrow.rate = 0.015,
length = unit(0.1, "cm"))
## S3 method for class 'OrganismDb':
geom_alignment(data, ..., which,
columns = c("TXNAME", "SYMBOL", "TXID", "GENEID"),
names.expr = "SYMBOL",
facets = NULL,
truncate.gaps = FALSE,
truncate.fun = NULL, ratio = 0.0025
)
GRanges
, data.frame
, TxDb
or EnsDb
object.GRanges
object to subset the TxDb
or EnsDb
object. For EnsDb
: can also be a single, or a list of, filter object(s)
extending BasicFilter-class
.GRanges
:
Character vector specifying statistics to use. "stepping" with
randomly assigned stepping levels as y varialbe. "identity" allow
users to specify y
value in aes
. For
:
defualt "identity" give full gene model and "reduce" for reduced model.
addStepping
, control whether to show each group as
unique level or not. If set to FALSE
, if two groups are not
overlapped with each other, they will probably be layout in the same
level to save space.shrinkagefun
in package biovizBase.maxGap
.names.expr
.set.seed(1)
N <- 100
require(GenomicRanges)
## ======================================================================
## simmulated GRanges
## ======================================================================
gr <- GRanges(seqnames =
sample(c("chr1", "chr2", "chr3"),
size = N, replace = TRUE),
IRanges(
start = sample(1:300, size = N, replace = TRUE),
width = sample(70:75, size = N,replace = TRUE)),
strand = sample(c("+", "-", "*"), size = N,
replace = TRUE),
value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),
sample = sample(c("Normal", "Tumor"),
size = N, replace = TRUE),
pair = sample(letters, size = N,
replace = TRUE))
## ======================================================================
## default
## ======================================================================
ggplot(gr) + geom_alignment()
## or
ggplot() + geom_alignment(gr)
## ======================================================================
## facetting and aesthetics
## ======================================================================
ggplot(gr) + geom_alignment(facets = sample ~ seqnames, aes(color = strand, fill = strand))
## ======================================================================
## stat:stepping
## ======================================================================
ggplot(gr) + geom_alignment(stat = "stepping", aes(group = pair))
## ======================================================================
## group.selfish controls when
## ======================================================================
ggplot(gr) + geom_alignment(stat = "stepping", aes(group = pair), group.selfish = FALSE)
## =======================================
## main/gap geom
## =======================================
ggplot(gr) + geom_alignment(range.geom = "arrowrect", gap.geom = "chevron")
## =======================================
## For TxDb
## =======================================
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
data(genesymbol, package = "biovizBase")
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
## made a track comparing full/reduce stat.
ggbio() + geom_alignment(data = txdb, which = genesymbol["RBM17"])
p1 <- ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"])
p1
p2 <- ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"], stat = "reduce")
tracks(full = p1, reduce = p2, heights = c(3, 1))
tracks(full = p1, reduce = p2, heights = c(3, 1)) + theme_tracks_sunset()
tracks(full = p1, reduce = p2, heights = c(3, 1)) +
theme_tracks_sunset(axis.line.color = NA)
## change y labels
ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"], names.expr = "tx_id:::gene_id")
Run the code above in your browser using DataLab