Learn R Programming

⚠️There's a newer version (0.2.13) of this package.Take me there.

ggdag: An R Package for visualizing and analyzing causal directed acyclic graphs

Tidy, analyze, and plot causal directed acyclic graphs (DAGs). ggdag uses the powerful dagitty package to create and analyze structural causal models and plot them using ggplot2 and ggraph in a consistent and easy manner.

Installation

You can install ggdag with:

install.packages("ggdag")

Or you can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("malcolmbarrett/ggdag")

Example

ggdag makes it easy to use dagitty in the context of the tidyverse. You can directly tidy dagitty objects or use convenience functions to create DAGs using a more R-like syntax:

library(ggdag)
library(ggplot2)

#  example from the dagitty package
dag <- dagitty::dagitty("dag {
    y <- x <- z1 <- v -> z2 -> y
    z1 <- w1 <-> w2 -> z2
    x <- w1 -> y
    x <- w2 -> y
    x [exposure]
    y [outcome]
  }")

tidy_dag <- tidy_dagitty(dag)

tidy_dag
#> # A DAG with 7 nodes and 12 edges
#> #
#> # Exposure: x
#> # Outcome: y
#> #
#> # A tibble: 13 × 8
#>    name       x      y direction to       xend   yend circular
#>    <chr>  <dbl>  <dbl> <fct>     <chr>   <dbl>  <dbl> <lgl>   
#>  1 v     0.496  -3.40  ->        z1     1.83   -2.92  FALSE   
#>  2 v     0.496  -3.40  ->        z2     0.0188 -2.08  FALSE   
#>  3 w1    1.73   -1.94  ->        x      2.07   -1.42  FALSE   
#>  4 w1    1.73   -1.94  ->        y      1.00   -0.944 FALSE   
#>  5 w1    1.73   -1.94  ->        z1     1.83   -2.92  FALSE   
#>  6 w1    1.73   -1.94  <->       w2     0.873  -1.56  FALSE   
#>  7 w2    0.873  -1.56  ->        x      2.07   -1.42  FALSE   
#>  8 w2    0.873  -1.56  ->        y      1.00   -0.944 FALSE   
#>  9 w2    0.873  -1.56  ->        z2     0.0188 -2.08  FALSE   
#> 10 x     2.07   -1.42  ->        y      1.00   -0.944 FALSE   
#> 11 y     1.00   -0.944 <NA>      <NA>  NA      NA     FALSE   
#> 12 z1    1.83   -2.92  ->        x      2.07   -1.42  FALSE   
#> 13 z2    0.0188 -2.08  ->        y      1.00   -0.944 FALSE

#  using more R-like syntax to create the same DAG
tidy_ggdag <- dagify(
  y ~ x + z2 + w2 + w1,
  x ~ z1 + w1 + w2,
  z1 ~ w1 + v,
  z2 ~ w2 + v,
  w1 ~ ~w2, # bidirected path
  exposure = "x",
  outcome = "y"
) %>%
  tidy_dagitty()

tidy_ggdag
#> # A DAG with 7 nodes and 12 edges
#> #
#> # Exposure: x
#> # Outcome: y
#> #
#> # A tibble: 13 × 8
#>    name      x     y direction to     xend  yend circular
#>    <chr> <dbl> <dbl> <fct>     <chr> <dbl> <dbl> <lgl>   
#>  1 v     -3.58  3.30 ->        z1    -4.05  4.63 FALSE   
#>  2 v     -3.58  3.30 ->        z2    -2.23  3.74 FALSE   
#>  3 w1    -3.03  5.74 ->        x     -3.20  5.14 FALSE   
#>  4 w1    -3.03  5.74 ->        y     -1.98  5.22 FALSE   
#>  5 w1    -3.03  5.74 ->        z1    -4.05  4.63 FALSE   
#>  6 w1    -3.03  5.74 <->       w2    -2.35  4.72 FALSE   
#>  7 w2    -2.35  4.72 ->        x     -3.20  5.14 FALSE   
#>  8 w2    -2.35  4.72 ->        y     -1.98  5.22 FALSE   
#>  9 w2    -2.35  4.72 ->        z2    -2.23  3.74 FALSE   
#> 10 x     -3.20  5.14 ->        y     -1.98  5.22 FALSE   
#> 11 y     -1.98  5.22 <NA>      <NA>  NA    NA    FALSE   
#> 12 z1    -4.05  4.63 ->        x     -3.20  5.14 FALSE   
#> 13 z2    -2.23  3.74 ->        y     -1.98  5.22 FALSE

ggdag also provides functionality for analyzing DAGs and plotting them in ggplot2:

ggdag(tidy_ggdag) +
  theme_dag()
ggdag_adjustment_set(tidy_ggdag, node_size = 14) +
  theme(legend.position = "bottom")

As well as geoms and other functions for plotting them directly in ggplot2:

dagify(m ~ x + y) %>%
  tidy_dagitty() %>%
  node_dconnected("x", "y", controlling_for = "m") %>%
  ggplot(aes(
    x = x,
    y = y,
    xend = xend,
    yend = yend,
    shape = adjusted,
    col = d_relationship
  )) +
  geom_dag_edges(end_cap = ggraph::circle(10, "mm")) +
  geom_dag_collider_edges() +
  geom_dag_point() +
  geom_dag_text(col = "white") +
  theme_dag() +
  scale_adjusted() +
  expand_plot(expand_y = expansion(c(0.2, 0.2))) +
  scale_color_viridis_d(
    name = "d-relationship",
    na.value = "grey85",
    begin = .35
  )

And common structures of bias:

ggdag_equivalent_dags(confounder_triangle())

ggdag_butterfly_bias(edge_type = "diagonal")

Copy Link

Version

Install

install.packages('ggdag')

Monthly Downloads

4,511

Version

0.2.8

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Malcolm Barrett

Last Published

March 17th, 2023

Functions in ggdag (0.2.8)

Assess d-separation between variables

D-relationship between variables
as.data.frame.tidy_dagitty

Convert a tidy_dagitty object to data.frame
as.tbl.tidy_daggity

Convert a tidy_dagitty object to tbl
Equivalent DAGs and Classes

Generating Equivalent Models
Canonicalize DAGs

Canonicalize a DAG
as_tbl_graph

Convert DAGS to tidygraph
dplyr

Dplyr verb methods for tidy_dagitty objects
dagify

Create a dagitty DAG using R-like syntax
DAG Edges

Directed DAG edges
geom_dag_edges

Directed and bidirected DAG edges
dag

Create a dagitty DAG
fortify

Fortify a tidy_dagitty object for ggplot2
is_confounder

Assess if a variable confounds a relationship
DAG Labels

DAG labels
is.tidy_dagitty

Test for object class for tidy_dagitty
Test if Variable Is Collider

Detecting colliders in DAGs
geom_dag_collider_edges

Edges for paths activated by stratification on colliders
ggdag

Quickly plot a DAG in ggplot2
Nodes

DAG Nodes
theme_dag_blank

Minimalist DAG themes
print.tidy_dagitty

Print a tidy_dagitty
scale_adjusted

Common scale adjustments for DAGs
ggdag_classic

Quickly plot a DAG in ggplot2
Assess familial relationships between variables

Familial relationships between variables
theme_dag_grey

Simple grey themes for DAGs
Pathways

Find Open Paths Between Variables
Colliders

Find colliders
Adjust for variables

Adjust for variables and activate any biasing paths that result
%>%

Pipe operator
simulate_data

Simulate Data from Structural Equation Model
geom_dag_text

Node text
Variable Status

Find variable status
tbl_df.tidy_daggity

Convert a tidy_dagitty object to tbl_df
Exogenous Variables

Find Exogenous Variables
expand_plot

Quickly scale the size of a ggplot
ggplot.tidy_dagitty

Create a new ggplot
time_ordered_coords

Create a time-ordered coordinate data frame
tidy_dagitty

Tidy a dagitty object
Instrumental Variables

Find Instrumental Variables
Quick Plots for Common DAGs

Quickly create a DAGs with common structures of bias
reexports

Objects exported from other packages
remove_axes

Quickly remove plot axes and grids
ggrepel functions

Repulsive textual annotations
ggdag-package

ggdag: Analyze and Create Elegant Directed Acyclic Graphs
coordinates

Manipulate DAG coordinates
Covariate Adjustment Sets

Covariate Adjustment Sets
activate_collider_paths

Activate paths opened by stratifying on a collider