Learn R Programming

ggdmc (version 0.2.6.2)

summary.model: Summarise posterior samples

Description

This calls seven different variants of summary function to summarise posterior samples

Usage

# S3 method for model
summary(
  object,
  hyper = FALSE,
  start = 1,
  end = NA,
  hmeans = FALSE,
  hci = FALSE,
  prob = c(0.025, 0.25, 0.5, 0.75, 0.975),
  recovery = FALSE,
  ps = NA,
  type = 1,
  verbose = FALSE,
  digits = 2,
  ...
)

Arguments

object

posterior samples

hyper

whether to summarise hyper parameters

start

start from which iteration.

end

end at which iteration. For example, set start = 101 and end = 1000, instructs the function to calculate from 101 to 1000 iteration.

hmeans

a boolean switch indicating to calculate mean of hyper parameters

hci

boolean switch; whether to calculate credible intervals of hyper parameters

prob

a numeric vector, indicating the quantiles to calculate

recovery

a boolean switch indicating if samples are from a recovery study

ps

true parameter values. This is only for recovery studies

type

calculate type 1 or 2 hyper parameters

verbose

print more information

digits

printing digits

...

other arguments

Examples

Run this code
if (FALSE) {
est1 <- summary(hsam[[1]], FALSE)
est2 <- summary(hsam[[1]], FALSE, 1, 100)

est3 <- summary(hsam)
est4 <- summary(hsam, verbose = TRUE)
est5 <- summary(hsam, verbose = FALSE)

hest1 <- summary(hsam, TRUE)
}

Run the code above in your browser using DataLab