Learn R Programming

The package provides a suite of tools for specifying and examining experimental designs related to choice response time models (e.g., the Diffusion Decision Model). This package allows users to define how experimental factors influence one or more model parameters using R-style formula syntax, while also checking the logical consistency of these associations. Additionally, it integrates with the 'ggdmc' package, which employs Differential Evolution Markov Chain Monte Carlo (DE-MCMC) sampling to optimise model parameters.

Getting Started

# Setting up a minimal LBA model
pkg <- c("lbaModel", "ggdmcPrior")
sapply(pkg, require, character.only = TRUE)

model <- BuildModel(
    p_map = list(A = "1", B = "1", t0 = "1", mean_v = "M", sd_v = "1", st0 = "1"),
    match_map = list(M = list(s1 = "r1", s2 = "r2")),
    factors = list(S = c("s1", "s2")),
    constants = c(st0 = 0, sd_v = 1),
    accumulators = c("r1", "r2"),
    type = "lba"
)

# Setting up a minimal DDM model
model <- BuildModel(
    p_map = list(
        a = "1", v = "1", z = "1", d = "1", sz = "1", sv = "1",
        t0 = "1", st0 = "1", s = "1", precision = "1"
    ),
    match_map = list(M = list(s1 = "r1", s2 = "r2")),
    factors = list(S = c("s1", "s2")),
    constants = c(d = 0, s = 1, st0 = 0, sv = 0, precision = 3),
    accumulators = c("r1", "r2"),
    type = "fastdm"
)

slotNames(model)
#  [1] "parameter_map"               "accumulators"               
#  [3] "factors"                     "match_map"                  
#  [5] "constants"                   "cell_names"                 
#  [7] "parameter_x_condition_names" "model_boolean"              
#  [9] "pnames"                      "npar"                       
# [11] "type"       

The following code showed how the 'BuildModel' allocates a parameter vector with two different drift rates corresponding to the two conditions from a stimulus factor, 'S' to the DDM drift rate parameter,

pkg <- c("ggdmcModel")
sapply(pkg, require, character.only = TRUE)
cat("\nWorking directory: ", getwd(), "\n")

model <- BuildModel(
    p_map = list(a = "1", v = "S", z = "1", d = "1", sz = "1", sv = "1", t0 = "1", st0 = "1", s = "1"),
    match_map = list(M = list(s1 = "r1", s2 = "r2")),
    factors = list(S = c("s1", "s2")),
    constants = c(d = 1, s = 1, sv = 1, sz = 0.5, st0 = 0),
    accumulators = c("r1", "r2"),
    type = "fastdm"
)

pnames <- get_pnames(model)

p_vector <- c(a = 1, sv = 0.2, sz = 0.25, t0 = 0.15, v.s1 = 4, v.s2 = 2, z = .38)

# B, mean_v.true, t0
tmp_parameters <- c(0.8367, 0.0324, 3.8186, 2.8186, 0.1)
pmat <- table_parameters(model, tmp_parameters)

result <- lapply(pmat, function(x) {
    t(x)
})

print(result)
# $s1.r1
#         a d s st0 sv  sz     t0      v   z
# r1 0.8367 1 1   0  1 0.5 0.0324 3.8186 0.1
# r2 0.8367 1 1   0  1 0.5 0.0324 3.8186 0.1
# 
# $s1.r2
#         a d s st0 sv  sz     t0      v   z
# r1 0.8367 1 1   0  1 0.5 0.0324 3.8186 0.1
# r2 0.8367 1 1   0  1 0.5 0.0324 3.8186 0.1
# 
# $s2.r1
#         a d s st0 sv  sz     t0      v   z
# r1 0.8367 1 1   0  1 0.5 0.0324 2.8186 0.1
# r2 0.8367 1 1   0  1 0.5 0.0324 2.8186 0.1
# 
# $s2.r2
#         a d s st0 sv  sz     t0      v   z
# r1 0.8367 1 1   0  1 0.5 0.0324 2.8186 0.1
# r2 0.8367 1 1   0  1 0.5 0.0324 2.8186 0.1

Prerequisites

R (>= 3.5.0), Rcpp (>= 1.0.7), methods, RcppArmadillo (>= 0.10.7.5.0), ggdmcHeaders (0.2.9.1)

Installation

install.packages("ggdmcModel")

Copy Link

Version

Install

install.packages('ggdmcModel')

Monthly Downloads

134

Version

0.2.9.0

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Yi-Shin Lin

Last Published

July 19th, 2025

Functions in ggdmcModel (0.2.9.0)

get_pnames

Get Free Parameter Names from Model
build_model_boolean_r

Build Model Boolean
model-class

An S4 class Representing a Cognitive Model Object.
build_cell_names_r

Find All Possible Conditions
BuildModel

Build a model object
BuildDMI

Build Data Model Instance
get_node_1_index_r

Get Index Mapping for the Node 1 Accumulator
dmi-class

An S4 Class Representing a Data-Model Instance
split_parameter_x_condition

Map Experimental Conditions to Model Parameters
ggdmcModel

Model Builders for 'ggdmc' Package
table_parameters

Tabulate Model Parameter
is_core_parameter_x_condition

Parameter Mapping and Condition Processing Utilities