powered by
Colored Table to Help Interpretation of Principal Component Analysis
pca_interpret(res.pca, axes = 1:3)
A tibble of class tabxplor
The result of FactoMineR::PCA.
FactoMineR::PCA
The axes to print, as a numeric vector.
data(mtcars, package = "datasets") mtcars <- mtcars[1:7] |> dplyr::rename(weight = wt) res.pca <- FactoMineR::PCA(mtcars, graph = FALSE) pca_interpret(res.pca)
Run the code above in your browser using DataLab