powered by
Fits a logistic regression model to multivariate binary responses.
fitmlogit(..., C = c(), D = c(), data, mit = 100, ep = 1e-80, acc = 1e-04)
The maximized log-likelihood.
The vector of the Maximum likelihood estimates of the parameters.
The estimated asymptotic covariance matrix.
The estimated cell probabilities for each individual.
Model formulae of marginal logistic models for each response and for each association parameters (log-odds ratios).
Matrix of equality constraints.
Matrix of inequality cosntraints.
A data frame containing the responses and the explanatory variables.
A positive integer: maximum number of iterations. Default: 100.
100
A tolerance used in the algorithm: default 1e-80.
1e-80
A tolerance used in the algorithm: default 1e-4.
1e-4
Antonio Forcina, Giovanni M. Marchetti
See Evans and Forcina (2011).
Evans, R.J. and Forcina, A. (2013). Two algorithms for fitting constrained marginal models. Computational Statistics and Data Analysis, 66, 1-7.
glm
data(surdata) out1 <- fitmlogit(A ~X, B ~ Z, cbind(A, B) ~ X*Z, data = surdata) out1$beta out2 <- fitmlogit(A ~X, B ~ Z, cbind(A, B) ~ 1, data = surdata) out2$beta
Run the code above in your browser using DataLab