
Last chance! 50% off unlimited learning
Sale ends in
qmplot()
is the ggmap equivalent to the ggplot2 function qplot and allows
for the quick plotting of maps with data/models/etc.
qmplot(
x,
y,
...,
data,
zoom,
source = "stadia",
maptype = "stamen_toner_lite",
extent = "device",
legend = "right",
padding = 0.02,
force = FALSE,
darken = c(0, "black"),
mapcolor = "color",
facets = NULL,
margins = FALSE,
geom = "auto",
stat = list(NULL),
position = list(NULL),
xlim = c(NA, NA),
ylim = c(NA, NA),
main = NULL,
f = 0.05,
xlab = "Longitude",
ylab = "Latitude"
)
longitude values
latitude values
other aesthetics passed for each layer
data frame to use (optional). If not specified, will create one, extracting vectors from the current environment.
map zoom, see get_map()
map source, see get_map()
map type, see get_map()
how much of the plot should the map take up? "normal", "panel", or "device" (default)
"left", "right" (default), "bottom", "top", "bottomleft", "bottomright", "topleft", "topright", "none" (used with extent = "device")
distance from legend to corner of the plot (used with extent = "device")
force new map (don't use archived version)
vector of the form c(number, color), where number is in (0,1) and color is a character string indicating the color of the darken. 0 indicates no darkening, 1 indicates a black-out.
color ("color") or black-and-white ("bw")
faceting formula to use. Picks ggplot2::facet_wrap()
or
ggplot2::facet_grid()
depending on whether the formula is one sided or
two-sided
whether or not margins will be displayed
character vector specifying geom to use. defaults to "point"
character vector specifying statistics to use
character vector giving position adjustment to use
limits for x axis
limits for y axis
character vector or expression for plot title
number specifying the fraction by which the range should be extended
character vector or expression for x axis label
character vector or expression for y axis label
if (FALSE) # these are skipped to conserve R check time
qmplot(lon, lat, data = crime)
# only violent crimes
violent_crimes <- subset(crime,
offense != "auto theft" &
offense != "theft" &
offense != "burglary"
)
# rank violent crimes
violent_crimes$offense <- factor(
violent_crimes$offense,
levels = c("robbery", "aggravated assault", "rape", "murder")
)
# restrict to downtown
violent_crimes <- subset(violent_crimes,
-95.39681 <= lon & lon <= -95.34188 &
29.73631 <= lat & lat <= 29.78400
)
theme_set(theme_bw())
qmplot(lon, lat, data = violent_crimes, colour = offense,
size = I(3.5), alpha = I(.6), legend = "topleft")
qmplot(lon, lat, data = violent_crimes, geom = c("point","density2d"))
qmplot(lon, lat, data = violent_crimes) + facet_wrap(~ offense)
qmplot(lon, lat, data = violent_crimes, extent = "panel") + facet_wrap(~ offense)
qmplot(lon, lat, data = violent_crimes, extent = "panel", colour = offense, darken = .4) +
facet_wrap(~ month)
qmplot(long, lat, xend = long + delta_long,
color = I("red"), yend = lat + delta_lat, data = seals,
geom = "segment", zoom = 5)
qmplot(long, lat, xend = long + delta_long, maptype = "stamen_watercolor",
yend = lat + delta_lat, data = seals,
geom = "segment", zoom = 6)
qmplot(long, lat, xend = long + delta_long, maptype = "stamen_terrain",
yend = lat + delta_lat, data = seals,
geom = "segment", zoom = 6)
qmplot(lon, lat, data = wind, size = I(.5), alpha = I(.5)) +
ggtitle("NOAA Wind Report Sites")
# thin down data set...
s <- seq(1, 227, 8)
thinwind <- subset(wind,
lon %in% unique(wind$lon)[s] &
lat %in% unique(wind$lat)[s]
)
# for some reason adding arrows to the following plot bugs
theme_set(theme_bw(18))
qmplot(lon, lat, data = thinwind, geom = "tile", fill = spd, alpha = spd,
legend = "bottomleft") +
geom_leg(aes(xend = lon + delta_lon, yend = lat + delta_lat)) +
scale_fill_gradient2("Wind Speed\nand\nDirection",
low = "green", mid = scales::muted("green"), high = "red") +
scale_alpha("Wind Speed\nand\nDirection", range = c(.1, .75)) +
guides(fill = guide_legend(), alpha = guide_legend())
## kriging
############################################################
# the below examples show kriging based on undeclared packages
# to better comply with CRAN's standards, we remove it from
# executing, but leave the code as a kind of case-study
# they also require the rgdal library
library(lattice)
library(sp)
library(rgdal)
# load in and format the meuse dataset (see bivand, pebesma, and gomez-rubio)
data(meuse)
coordinates(meuse) <- c("x", "y")
proj4string(meuse) <- CRS("+init=epsg:28992")
meuse <- spTransform(meuse, CRS("+proj=longlat +datum=WGS84"))
# plot
plot(meuse)
m <- data.frame(slot(meuse, "coords"), slot(meuse, "data"))
names(m)[1:2] <- c("lon", "lat")
qmplot(lon, lat, data = m)
qmplot(lon, lat, data = m, zoom = 14)
qmplot(lon, lat, data = m, size = zinc,
zoom = 14, source = "google", maptype = "satellite",
alpha = I(.75), color = I("green"),
legend = "topleft", darken = .2
) + scale_size("Zinc (ppm)")
# load in the meuse.grid dataset (looking toward kriging)
library(gstat)
data(meuse.grid)
coordinates(meuse.grid) <- c("x", "y")
proj4string(meuse.grid) <- CRS("+init=epsg:28992")
meuse.grid <- spTransform(meuse.grid, CRS("+proj=longlat +datum=WGS84"))
# plot it
plot(meuse.grid)
mg <- data.frame(slot(meuse.grid, "coords"), slot(meuse.grid, "data"))
names(mg)[1:2] <- c("lon", "lat")
qmplot(lon, lat, data = mg, shape = I(15), zoom = 14, legend = "topleft") +
geom_point(aes(size = zinc), data = m, color = "green") +
scale_size("Zinc (ppm)")
# interpolate at unobserved locations (i.e. at meuse.grid points)
# pre-define scale for consistency
scale <- scale_color_gradient("Predicted\nZinc (ppm)",
low = "green", high = "red", lim = c(100, 1850)
)
# inverse distance weighting
idw <- idw(log(zinc) ~ 1, meuse, meuse.grid, idp = 2.5)
mg$idw <- exp(slot(idw, "data")$var1.pred)
qmplot(lon, lat, data = mg, shape = I(15), color = idw,
zoom = 14, legend = "topleft", alpha = I(.75), darken = .4
) + scale
# linear regression
lin <- krige(log(zinc) ~ 1, meuse, meuse.grid, degree = 1)
mg$lin <- exp(slot(lin, "data")$var1.pred)
qmplot(lon, lat, data = mg, shape = I(15), color = lin,
zoom = 14, legend = "topleft", alpha = I(.75), darken = .4
) + scale
# trend surface analysis
tsa <- krige(log(zinc) ~ 1, meuse, meuse.grid, degree = 2)
mg$tsa <- exp(slot(tsa, "data")$var1.pred)
qmplot(lon, lat, data = mg, shape = I(15), color = tsa,
zoom = 14, legend = "topleft", alpha = I(.75), darken = .4
) + scale
# ordinary kriging
vgram <- variogram(log(zinc) ~ 1, meuse) # plot(vgram)
vgramFit <- fit.variogram(vgram, vgm(1, "Exp", .2, .1))
ordKrige <- krige(log(zinc) ~ 1, meuse, meuse.grid, vgramFit)
mg$ordKrige <- exp(slot(ordKrige, "data")$var1.pred)
qmplot(lon, lat, data = mg, shape = I(15), color = ordKrige,
zoom = 14, legend = "topleft", alpha = I(.75), darken = .4
) + scale
# universal kriging
vgram <- variogram(log(zinc) ~ 1, meuse) # plot(vgram)
vgramFit <- fit.variogram(vgram, vgm(1, "Exp", .2, .1))
univKrige <- krige(log(zinc) ~ sqrt(dist), meuse, meuse.grid, vgramFit)
mg$univKrige <- exp(slot(univKrige, "data")$var1.pred)
qmplot(lon, lat, data = mg, shape = I(15), color = univKrige,
zoom = 14, legend = "topleft", alpha = I(.75), darken = .4
) + scale
# adding observed data layer
qmplot(lon, lat, data = mg, shape = I(15), color = univKrige,
zoom = 14, legend = "topleft", alpha = I(.75), darken = .4
) +
geom_point(
aes(x = lon, y = lat, size = zinc),
data = m, shape = 1, color = "black"
) +
scale +
scale_size("Observed\nLog Zinc")
# end dontrun
Run the code above in your browser using DataLab