# \donttest{
# Load example data
data(ko_abundance)
data(metadata)
# Prepare abundance data
abundance_data <- as.data.frame(ko_abundance)
rownames(abundance_data) <- abundance_data[, "#NAME"]
abundance_data <- abundance_data[, -1]
# Run differential abundance analysis using ALDEx2
results <- pathway_daa(
abundance = abundance_data,
metadata = metadata,
group = "Environment"
)
# Using a different method (DESeq2)
deseq_results <- pathway_daa(
abundance = abundance_data,
metadata = metadata,
group = "Environment",
daa_method = "DESeq2"
)
# Create example data with more samples
abundance <- data.frame(
sample1 = c(10, 20, 30),
sample2 = c(20, 30, 40),
sample3 = c(30, 40, 50),
sample4 = c(40, 50, 60),
sample5 = c(50, 60, 70),
row.names = c("pathway1", "pathway2", "pathway3")
)
metadata <- data.frame(
sample = c("sample1", "sample2", "sample3", "sample4", "sample5"),
group = c("control", "control", "treatment", "treatment", "treatment")
)
# Run differential abundance analysis using ALDEx2
results <- pathway_daa(abundance, metadata, "group")
# Using a different method (limma voom instead of DESeq2 for this small example)
limma_results <- pathway_daa(abundance, metadata, "group",
daa_method = "limma voom")
# Analyze specific samples only
subset_results <- pathway_daa(abundance, metadata, "group",
select = c("sample1", "sample2", "sample3", "sample4"))
# }
Run the code above in your browser using DataLab