# NOT RUN {
library(ggrepel)
library(gginnards)
random_string <- function(len = 6) {
paste(sample(letters, len, replace = TRUE), collapse = "")
}
# Make random data.
set.seed(1001)
d <- tibble::tibble(
x = rnorm(100),
y = rnorm(100),
group = rep(c("A", "B"), c(50, 50)),
lab = replicate(100, { random_string() })
)
ggplot(data = d, aes(x, y)) +
geom_point() +
stat_dens2d_filter(colour = "red")
# Using geom_debug() we can see that only 10 out off 100 rows in \code{d} are
# returned. Those highlighted in red in the previous example.
ggplot(data = d, aes(x, y)) +
geom_point() +
stat_dens2d_filter(geom = "debug")
ggplot(data = d, aes(x, y)) +
geom_point() +
stat_dens2d_filter(colour = "red", keep.fraction = 0.5)
ggplot(data = d, aes(x, y)) +
geom_point() +
stat_dens2d_filter(colour = "red",
keep.fraction = 0.5,
keep.number = 12)
ggplot(data = d, aes(x, y, colour = group)) +
geom_point() +
stat_dens2d_filter(shape = 1, size = 3, keep.fraction = 1/4)
ggplot(data = d, aes(x, y, colour = group)) +
geom_point() +
stat_dens2d_filter_g(shape = 1, size = 3, keep.fraction = 1/4)
ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens2d_filter(geom = "text")
ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens2d_filter(geom = "text_repel")
# }
Run the code above in your browser using DataLab