# NOT RUN {
# data for examples
x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
covariate <- sqrt(x) + rnorm(9)
group <- factor(c(rep("A", 4), rep("B", 5)))
my.df <- data.frame(x, group, covariate)
# Linear regression
ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb() +
expand_limits(y = 70)
# Linear regression using a table theme
ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(table.theme = ttheme_gtlight) +
expand_limits(y = 70)
# Polynomial regression
ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(method.args = list(formula = y ~ poly(x, 2))) +
expand_limits(y = 70)
# ANOVA
ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb() +
expand_limits(y = 70)
# ANOVA with renamed and selected columns
ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb(tb.vars = c(Effect = "term", "italic(F)" = "statistic", "italic(P)" = "p.value"),
parse = TRUE)
# ANCOVA (covariate not plotted)
ggplot(my.df, aes(group, x, z = covariate)) +
geom_point() +
stat_fit_tb(method.args = list(formula = y ~ x + z),
tb.vars = c(Effect = "term", "italic(F)" = "statistic", "italic(P)" = "p.value"),
parse = TRUE)
# t-test
ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb(method = "t.test",
tb.vars = c("italic(t)" = "statistic", "italic(P)" = "p.value"),
parse = TRUE)
# t-test (equal variances assumed)
ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb(method = "t.test",
method.args = list(formula = y ~ x, var.equal = TRUE),
tb.vars = c("italic(t)" = "statistic", "italic(P)" = "p.value"),
parse = TRUE)
# }
Run the code above in your browser using DataLab