# NOT RUN {
# for reproducibility
set.seed(123)
# if `cor.vars` not specified, all numeric variables used
ggstatsplot::ggcorrmat(data = iris)
# to get the correlalogram
# note that the function will run even if the vector with variable names is
# not of same length as the number of variables
ggstatsplot::ggcorrmat(
data = ggplot2::msleep,
cor.vars = sleep_total:bodywt,
cor.vars.names = c("total sleep", "REM sleep")
) + # further modification using `ggplot2`
ggplot2::scale_y_discrete(position = "right")
# to get the correlation matrix
ggstatsplot::ggcorrmat(
data = ggplot2::msleep,
cor.vars = sleep_total:bodywt,
output = "r"
)
# setting output = "p-values" (or "p") will return the p-value matrix
ggstatsplot::ggcorrmat(
data = ggplot2::msleep,
cor.vars = sleep_total:bodywt,
corr.method = "r",
p.adjust.method = "bonferroni",
output = "p"
)
# setting `output = "ci"` will return the confidence intervals for unique
# correlation pairs
ggstatsplot::ggcorrmat(
data = ggplot2::msleep,
cor.vars = sleep_total:bodywt,
p.adjust.method = "BH",
output = "ci"
)
# modifying elements of the correlation matrix by changing function defaults
ggstatsplot::ggcorrmat(
data = datasets::iris,
cor.vars = c(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width),
sig.level = 0.01,
ggtheme = ggplot2::theme_bw(),
hc.order = TRUE,
matrix.type = "lower",
outline.col = "white",
title = "Dataset: Iris"
)
# }
Run the code above in your browser using DataLab