fit.ghypmv(data, lambda = 1, alpha.bar = 1, mu = NULL, sigma = NULL,
gamma = NULL, opt.pars = c(lambda = T, alpha.bar = T, mu = T,
sigma = T, gamma = !symmetric),
symmetric = F, nit = 2000, reltol = 1e-10, abstol = reltol * 10,
na.rm = F, silent = FALSE, save.data = T, ...)
fit.hypmv(data,
opt.pars = c(alpha.bar = T, mu = T, sigma = T, gamma = T), ...)
fit.NIGmv(data,
opt.pars = c(alpha.bar = T, mu = T, sigma = T, gamma = T), ...)
fit.VGmv(data, lambda = 1,
opt.pars = c(lambda = T, mu = T, sigma = T, gamma = T), ...)
fit.tmv(data, nu = 4,
opt.pars = c(lambda = T, mu = T, sigma = T, gamma = T), ...)vector or univariate data.frame.-2*lambda.vector which states which parameters should be fitted.TRUE the skewness parameter gamma keeps zero.TRUE data will be stored within the
mle.ghypmv object.TRUE missing values will be removed from data.TRUE no prompts will appear in the console.optim and to fit.ghypmv when
fitting special cases of the generalized hyperbolic distribution.mle.ghypmv.doc folder. A more detailed description is provided
by the book Quantitative Risk Management, Concepts, Techniques and Tools
(see optim is used to maximize
the loglikelihood function of the univariate mixing distribution.
The default method is that of Nelder and Mead which
uses only function values. Parameters of optim can be passed via
the ...argument of the fitting routines.fit.ghypuv, fit.hypuv, fit.NIGuv,
fit.VGuv, fit.tuv for univariate fitting routines.data(smi.stocks)
fit.ghypmv(data=smi.stocks,opt.pars=c(lambda=FALSE),lambda=2,
control=list(rel.tol=1e-5, abs.tol=1e-5), abstol=0.01, reltol=0.01)Run the code above in your browser using DataLab