Last chance! 50% off unlimited learning
Sale ends in
hist.ghypuv
computes a histogram of the given data values
and the univariate generalized hyperbolic density.## S3 method for class 'ghypuv':
hist(
x, data = ghyp.data(x), gaussian = TRUE, log.hist = F, ylim = NULL,
ghyp.col = 1, ghyp.lwd = 1, ghyp.lty = "solid", col = 1,
nclass = 30, plot.legend = TRUE,
location = if (log.hist) "bottom" else "topright", legend.cex = 1, ...)
mle.ghypuv
. Alternatively
an object of class
TRUE
a qq-plot of the normal distribution is plotted as a reference.TRUE
the logarithm of the histogramm is plotted.TRUE
a legend is drawn.legend
for possible values.qqghyp
, fit.ghypuv
, qghyp
, plot
,
hist
, legend
data(smi.stocks)
univariate.fit <- fit.ghypuv(data=smi.stocks[,"SMI"],
opt.pars=c(mu=FALSE,sigma=FALSE),symmetric=T)
hist(univariate.fit)
Run the code above in your browser using DataLab