## alpha.bar parametrization of a univariate generalized hyperbolic distribution
ghyp(lambda=1, alpha.bar=0.1, mu=0, sigma=1, gamma=0)
## lambda/chi parametrization of a univariate generalized hyperbolic distribution
ghyp(lambda=1, chi=1, psi=0.5, mu=0, sigma=1, gamma=0)
## alpha.bar parametrization of a multivariate generalized hyperbolic distribution
ghyp(lambda=1, alpha.bar=0.1, mu=rep(0,2), sigma=diag(rep(1,2)), gamma=rep(0,2))
## lambda/chi parametrization of a multivariate generalized hyperbolic distribution
ghyp(lambda=1, chi=1, psi=0.5, mu=rep(0,2), sigma=diag(rep(1,2)), gamma=rep(0,2))
## alpha.bar parametrization of a univariate hyperbolic distribution
hyp(alpha.bar=0.3, mu=1, sigma=0.1, gamma=0)
## lambda/chi parametrization of a univariate hyperbolic distribution
hyp(chi=1, psi=2, mu=1, sigma=0.1, gamma=0)
## alpha.bar parametrization of a univariate normal inverse gaussian distribution
NIG(alpha.bar=0.3, mu=1, sigma=0.1, gamma=0)
## lambda/chi parametrization of a univariate normal inverse gaussian distribution
NIG(chi=1, psi=2, mu=1, sigma=0.1, gamma=0)
## alpha.bar parametrization of a univariate variance gamma distribution
VG(lambda=2, mu=1, sigma=0.1, gamma=0)
## alpha.bar parametrization of a univariate student-t distribution
student.t(nu = 3, mu=1, sigma=0.1, gamma=0)
Run the code above in your browser using DataLab