dgig(x, lambda = 1, chi = 1, psi = 1, logvalue = F)pgig(q, lambda = 1, chi = 1, psi = 1, ...)
qgig(p, lambda = 1, chi = 1, psi = 1, method = c("integration", "splines"),
spline.points = 200, subdivisions = 200,
root.tol = .Machine$double.eps^0.5,
rel.tol = root.tol^1.5, abs.tol = rel.tol, ...)
rgig(n = 10, lambda = 1, chi = 1, psi = 1, envplot = F, messages = F)
ESgig(p, lambda = 1, chi = 1, psi = 1, ...)
Egig(lambda, chi, psi, func = c("x", "logx", "1/x", "var"), check.pars = T)
TRUE
the logarithm of the density will be returned.integrate
when computing
the the distribution function pgig
.integrate
.integrate
.uniroot
.TRUE
error messages from rgig
are printed.TRUE
an plot of the envelope is shown.x
is the expected value (default), log x
returns the
expected value of the logarithm of x
, 1/x
returns the
TRUE
the parameters are checked first.ESgig
to qgig
.dgig
gives the density,
pgig
gives the distribution function,
qgig
gives the quantile function,
ESgig
gives the expected shortfall,
rgig
generates random deviates and
Egig
gives the expected value
of either x
, 1/x
, log(x)
or the variance if func
equals var
.qgig
computes the quantiles either by using the uniroot
afterwards. The rel.tol
, abs.tol
, root.tol
and spline.points
.
rgig
uses the random generator from the S-Plus library QRMlib
(see fit.ghypuv
, fit.ghypmv
, integrate
,
uniroot
, spline
dgig(1:40, lambda = 10, chi = 1, psi = 1)
qgig(1e-5, lambda = 10, chi = 1, psi = 1)
Egig(lambda = 10, chi = 1, psi = 1, func = "x")
Egig(lambda = 10, chi = 1, psi = 1, func = "var")
Egig(lambda = 10, chi = 1, psi = 1, func = "1/x")
Run the code above in your browser using DataLab