Internal ghyp functions. These functions are not to be called by the user.
.abar2chipsi(alpha.bar, lambda, eps = .Machine$double.eps).besselM3(lambda = 9/2, x = 2, logvalue = FALSE)
.check.data(data, case = c("uv", "mv"), na.rm = TRUE,
            fit = TRUE, dim = NULL)
.check.gig.pars(lambda, chi, psi)
.check.norm.pars(mu, sigma, gamma, dimension)
.check.opt.pars(opt.pars, symmetric)
.fit.ghyp(object, llh = 0, n.iter = 0, converged = FALSE, error.code = 0,
          error.message = "", parameter.variance, fitted.params, aic,
          trace.pars = list())
.ghyp.model(lambda, chi, psi, gamma)
.t.transform(lambda)
.inv.t.transform(lambda.transf)
.integrate.moment.gig(x, moment = 1, ...)
.integrate.moment.ghypuv(x, moment = 1, ...)
.dghypuv(x, lambda = 1, chi = 1, psi = 1, alpha.bar = NULL,
         mu = 1, sigma = 1, gamma = 0, logvalue = FALSE)
.dghypmv(x, lambda, chi, psi, mu, sigma, gamma, logvalue = FALSE)
.mle.default(data, pdf, vars, opt.pars = rep(TRUE, length(vars)),
             transform = NULL, se = FALSE,
             na.rm = FALSE, silent = FALSE, ...)
.p.default(q, pdf, pdf.args, lower, upper, ...)
.q.default(p, pdf, pdf.args, interval, p.lower, ...)
.test.ghyp(object, case = c("ghyp", "univariate", "multivariate"))
.is.gaussian(object)
.is.univariate(object)
.is.symmetric(object)
.is.student.t(object, symmetric = NULL)
.get.stepAIC.ghyp(stepAIC.obj,
                  dist = c("ghyp", "hyp", "NIG", "VG", "t", "gauss"),
                  symmetric = FALSE)
Wolfgang Breymann, David Luethi
.abar2chipsi 
  Convert “alpha.bar” to “chi” and “psi” when using the
  “alpha.bar” parametrization.
.besselM3 
  Wrapper function for besselK.
.check.data 
  This function checks data for consistency.
  Only data objects of typ data.frame,
  matrix or numeric are accepted.
.check.gig.pars 
  Some combinations of the GIG parameters are not allowed. This
  function checks whether this is the case or not.
.check.norm.pars 
This function simply checks if the dimensions match.
.check.opt.pars 
 When calling the fitting routines
  (fit.ghypuv and fit.ghypmv) a named vector
  containing the parameters which should not be fitted can be passed.
  By default all parameters will be fitted.
.fit.ghyp 
  This function is called by the functions
  fit.ghypuv and fit.ghypmv to create
  objects of class mle.ghyp and
  mle.ghyp.
.ghyp.model 
  Check if the parameters denote a special case of the generalized hyperbolic
  distribution.
.t.transfrom 
  Transformation  function used in fit.ghypuv for
  parameter nu belonging to the Student-t distribution.
.inv.t.transfrom 
  The inverse of t.transfrom.
.integrate.moment.gig 
  This function is used when computing the conditional expectation
  of a generalized inverse gaussian distribution.
.integrate.moment.ghypuv 
  This function is used when computing the conditional expectation
  of a univariate generalized hyperbolic distribution.
.dghypuv 
 This function is used during the fitting
  procedure. Use dghyp to compute the density of
  generalized hyperbolic distribution objects.
.dghypmv 
 This function is used during the fitting
  procedure. Use dghyp to compute the density of
  generalized hyperbolic distribution objects.
.mle.default 
 This function serves as a generic function for
  maximum likelihood estimation.  It is for internal use only. See
  fit.ghypuv which wraps this function.
.p.default 
  A generic distribution function integrator given a density function.
  See pghyp for a wrapper of this
  function.
.q.default 
  A generic quantile function calculator given a density function.
  See qghyp for a wrapper of this   function.
.test.ghyp 
 This function tests whether the object is of class
  ghyp and sometimes whether it is univariate
  or multivariate according to the argument case and states a
  corresponding error if not.
.is.gaussian 
  Tests whether the object is of a gaussian type.
.is.symmetric 
  Tests whether the object is symmetric.
.is.student.t 
  Tests whether the object describes a Student-t distribution.
.is.univariate 
  Tests whether the object is a univariate ghyp-distribution.
.get.stepAIC.ghyp 
  Returns a specific model from a list returned by stepAIC.ghyp