powered by
linkSignificance allows to estimate the statistical deviations of an observed graph from a ghype model.
linkSignificance( graph, model, under = FALSE, log.p = FALSE, binomial.approximation = FALSE, give_pvals = FALSE )link_significance( graph, model, under = FALSE, log.p = FALSE, binomial.approximation = FALSE, give_pvals = FALSE )
link_significance( graph, model, under = FALSE, log.p = FALSE, binomial.approximation = FALSE, give_pvals = FALSE )
an adjacency matrix or a igraph object.
a ghype model
boolean, estimate under-represented deviations? Default FALSE.
boolean, return log values of probabilities
boolean, force binomial? default FALSE
boolean, return p-values for both under and over significance?
matrix of probabilities with same size as adjacency matrix.
# NOT RUN { data("adj_karate") fullmodel <- ghype(graph = adj_karate, directed = FALSE, selfloops = FALSE) link_significance(graph = adj_karate, model = fullmodel, under=FALSE) # }
Run the code above in your browser using DataLab