## Example taken from ?Kendall::MannKendall
library(Kendall)
data(PrecipGL)
plot(PrecipGL)
## Mann-Kendall trend test without pre-whitening
x <- as.numeric(PrecipGL)
significantTau(x, p = 0.001, prewhitening = FALSE, df = TRUE)
## Mann-Kendall trend test with pre-whitening
significantTau(x, p = 0.001, prewhitening = TRUE, df = TRUE)
#############################################################################
### use case: significant (p < 0.001) mann-kendall trends (2009-13) #########
#############################################################################
## download files from 2009-2013
gimms_files <- downloadGimms(x = as.Date("2009-01-01"),
dsn = paste0(getwd(), "/data"))
## convert binary files to 'Raster*' format
gimms_rasters <- rasterizeGimms(gimms_files, filename = gimms_files,
format = "GTiff", overwrite = TRUE)
## crop iran
library(rworldmap)
data(countriesLow)
gimms_iran <- crop(gimms_rasters,
subset(countriesLow, ADMIN == "Iran"))
## remove seasonal signal via remote::deseason
library(remote)
gimms_deseason <- deseason(gimms_iran, cycle.window = 24, use.cpp = TRUE)
## identify long-term monotonous trends from mann-kendall trend test; all values
## of kendall's tau with p >= 0.001 are set to NA; note that pre-whitening is
## applied prior to the actual trend test
gimms_trends <- significantTau(gimms_deseason, p = 0.001,
prewhitening = TRUE)
## create figure
library(RColorBrewer)
library(latticeExtra)
cols <- colorRampPalette(brewer.pal(11, "BrBG"))
spplot(gimms_trends, col.regions = cols(100), scales = list(draw = TRUE),
at = seq(-.525, .525, .025),
main = expression("Kendall's" ~ tau ~ "(2009-2013)")) +
layer(sp.polygons(countriesLow))
Run the code above in your browser using DataLab