50% off: Unlimited data and AI learning.
State of Data and AI Literacy Report 2025

giniCI (version 0.1.0)

giniCI-package: giniCI: Gini-based Composite Indicators

Description

An implementation of Gini-based weighting approaches in constructing composite indicators, providing functionalities for normalization, aggregation, and ranking comparison.

Arguments

Author

Viet Duong Nguyen (maintainer) <viet-duong.nguyen@outlook.it>
Chiara Gigliarano
Mariateresa Ciommi

References

Ciommi, M., Gigliarano, C., Emili, A., Taralli, S., and Chelli, F. M. (2017). A new class of composite indicators for measuring well-being at the local level: An application to the Equitable and Sustainable Well-being (BES) of the Italian Provinces. Ecological Indicators, 76, 281--296.