Learn R Programming

giniVarCI (version 0.0.1-3)

gfisk: Gini index for the Fisk (Log Logistic) distribution with user-defined shape parameters

Description

Calculates the Gini indices for the Fisk (Log Logistic) distribution with shape parameters \(a\) (shape1.a).

Usage

gfisk(shape1.a)

Value

A numeric vector with the Gini indices. A NA is returned when a shape parameter is non-numeric or non-positive.

Arguments

shape1.a

A vector of positive real numbers specifying shape parameters \(a\) of the Fisk (Log Logistic) distribution.

Author

Juan F Munoz jfmunoz@ugr.es

Jose M Pavia pavia@uv.es

Encarnacion Alvarez encarniav@ugr.es

Details

The Fisk (Log Logistic) distribution with scale parameter \(b\), shape parameter \(a\) (argument shape1.a) and denoted as \(Fisk(b,a)\), where \(b>0\) and \(a>0\), has a probability density function given by (Kleiber and Kotz, 2003; Johnson et al., 1995; Yee, 2022) $$f(y) = \displaystyle \frac{a}{y}\frac{\left(\frac{y}{b}\right)^{a}}{ \left[\left(\frac{y}{b} \right)^{a} + 1 \right]^{2} },$$ and a cumulative distribution function given by $$F(y)=1-\left[1 + \displaystyle \left( \frac{y}{b}\right)^{a} \right]^{-1},$$ where \(y \geq 0\).

The Gini index can be computed as $$G = \left\{ \begin{array}{cl} 1 , & 0< a <1; \\ \displaystyle \frac{1}{a}, & a \geq 1. \end{array} \right. $$ The Fisk (Log Logistic) distribution is related to the Dagum distribution: \(Fisk(b,a) = Dagum(b,a,1)\).

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 14. Wiley, New York.

Yee, T. W. (2022). VGAM: Vector Generalized Linear and Additive Models. R package version 1.1-7, https://CRAN.R-project.org/package=VGAM.

See Also

gdagum, gburr, gpareto, ggompertz

Examples

Run this code
# Gini index for the Fisk distribution with a shape parameter 'a = 2'.
gfisk(shape1.a = 2)

# Gini indices for the Fisk distribution and different shape parameters.
gfisk(shape1.a = 1:10)

Run the code above in your browser using DataLab