Learn R Programming

giniVarCI (version 0.0.1-3)

ggamma: Gini index for the Gamma distribution with user-defined shape parameter

Description

Calculates the Gini indices for the Gamma distribution with shape parameters \(\alpha\).

Usage

ggamma(shape)

Value

A numeric vector with the Gini indices. A NA is returned when a shape parameter is non-numeric or non-positive.

Arguments

shape

A vector of positive real numbers specifying the shape parameters \(\alpha\) of the Gamma distribution.

Author

Juan F Munoz jfmunoz@ugr.es

Jose M Pavia pavia@uv.es

Encarnacion Alvarez encarniav@ugr.es

Details

The Gamma distribution with shape parameter \(\alpha\), scale parameter \(\sigma\) and denoted as \(Gamma(\alpha, \sigma)\), where \(\alpha>0\) and \(\sigma>0\), has a probability density function given by (Kleiber and Kotz, 2003; Johnson et al., 1995) $$f(y) = \displaystyle \frac{1}{\sigma^{\alpha}\Gamma(\alpha)}y^{\alpha-1}e^{-y/\sigma},$$ and a cumulative distribution function given by $$F(y) = \frac{\gamma\left(\alpha, \frac{y}{\sigma}\right)}{\Gamma(\alpha)},$$ where \(y \geq 0\), the gamma function is defined by $$\Gamma(\alpha) = \int_{0}^{\infty}t^{\alpha-1}e^{-t}dt,$$ and the lower incomplete gamma function is given by $$\gamma(\alpha,y) = \int_{0}^{y}t^{\alpha-1}e^{-t}dt.$$

The Gini index can be computed as $$G = \displaystyle \frac{\Gamma\left(\frac{2\alpha+1}{2}\right)}{\alpha\Gamma(\alpha)\sqrt{\pi}}.$$ The Gamma distribution is related to the Chi-squared distribution: \(Gamma(n/2, 2) = \chi_{n}^2\).

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 14. Wiley, New York.

See Also

gchisq, gf, gbeta, gweibull, glnorm

Examples

Run this code
# Gini index for the Gamma distribution with 'shape = 1'.
ggamma(shape = 1)

# Gini indices for the Gamma distribution and different shape parameters.
ggamma(shape = 1:10)

Run the code above in your browser using DataLab