The Pareto (III) distribution with location parameter \(a\), scale parameter \(b\), inequality
parameter g
and denoted as \(ParetoIII(a,b,g)\), where \(a>0\), \(b>0\), and \(g \in [0,1]\), has a probability density function given by (Kleiber and Kotz, 2003; Johnson et al., 1995; Yee, 2022)
$$f(y)= \displaystyle \frac{1}{bg} \left( \frac{y-a}{b}\right)^{1/g-1} \left[1 + \left( \frac{y-a}{b}\right)^{1/g} \right]^{-2},$$ and a cumulative distribution function given by
$$F(y)=1-\left[1 + \displaystyle \left( \frac{y-a}{b}\right)^{1/g} \right]^{-1},$$
where \(y>a\).
The Gini index is \(G = g.\)
If inequality
is not specified it assumes the default value of 1. The Pareto (III) distribution is related to the Pareto (IV) distribution: \(ParetoIII(a,b,g) = ParetoIV(a,b,g,1)\).