Learn R Programming

gjam (version 2.6.2)

Generalized Joint Attribute Modeling

Description

Analyzes joint attribute data (e.g., species abundance) that are combinations of continuous and discrete data with Gibbs sampling. Full model and computation details are described in Clark et al. (2018) .

Copy Link

Version

Install

install.packages('gjam')

Monthly Downloads

416

Version

2.6.2

License

GPL (>= 2)

Maintainer

James S Clark

Last Published

May 23rd, 2022

Functions in gjam (2.6.2)

gjamPlot

Plot gjam analysis
gjamFillMissingTimes

Fill out data for time series (state-space) gjam
gjam

Gibbs sampler for gjam data
gjamIIEplot

Plots indirect effects and interactions for gjam data
gjamCensorY

Censor gjam response data
gjamIIE

Indirect effects and interactions for gjam data
gjamOrdination

Ordinate gjam data
gjam-package

Generalized Joint Attribute Modeling
gjamDeZero

Compress (de-zero) gjam data
gjamConditionalParameters

Parameters for gjam conditional prediction
gjamSpec2Trait

Ecological traits for gjam analysis
gjamPredict

Predict gjam data
gjamPoints2Grid

Incidence point pattern to grid counts
gjamSensitivity

Sensitivity coefficients for gjam
gjamSimData

Simulated data for gjam analysis
gjamTrimY

Trim gjam response data
gjamReZero

Expand (re-zero) gjam data
gjamPriorTemplate

Prior coefficients for gjam analysis