# NOT RUN {
## Example 1.
## Model selection between two LCA models with different number of latent classes.
data(gss08)
class2 = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ 1,
data = gss08, nclass = 2)
class3 = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ 1,
data = gss08, nclass = 3)
class4 = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ 1,
data = gss08, nclass = 4)
glca.gof(class2, class3, class4)
# }
# NOT RUN {
glca.gof(class2, class3, class4, test = "boot")
# }
# NOT RUN {
## Example 2.
## Model selection between two MLCA models with different number of latent clusters.
cluster2 = glca(item(ECIGT, ECIGAR, ESLT, EELCIGT, EHOOKAH) ~ 1,
group = SCH_ID, data = nyts18, nclass = 2, ncluster = 2)
cluster3 = glca(item(ECIGT, ECIGAR, ESLT, EELCIGT, EHOOKAH) ~ 1,
group = SCH_ID, data = nyts18, nclass = 2, ncluster = 3)
glca.gof(cluster2, cluster3)
# }
# NOT RUN {
glca.gof(cluster2, cluster3, test = "boot")
# }
# NOT RUN {
# }
# NOT RUN {
## Example 3.
## MGLCA model selection under the measurement (invariance) assumption across groups.
measInv = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ 1,
group = DEGREE, data = gss08, nclass = 3)
measVar = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ 1,
group = DEGREE, data = gss08, nclass = 3, measure.inv = FALSE)
glca.gof(measInv, measVar)
glca.gof(measInv, measVar, test = "chisq")
# }
Run the code above in your browser using DataLab