# simple linear regression
data(cars)
m <- glmer2stan( dist ~ speed , data=cars )
speed.seq <- seq( from=min(cars$speed) , to=max(cars$speed) , length.out=20 )
pred.dist <- stanpredict( m , data=list( speed=speed.seq ) )$dist
plot( dist ~ speed , cars )
lines( speed.seq , pred.dist$mu )
lines( speed.seq , pred.dist$mu.ci[1,] , lty=2 )
lines( speed.seq , pred.dist$mu.ci[2,] , lty=2 )
# binomial example
data(UCBadmit)
m <- glmer2stan( cbind(admit,reject) ~ (1|dept) + male ,
data=UCBadmit , family="binomial" )
pred.admit <- stanpredict( m , data=UCBadmit )$admit
prop.admit <- UCBadmit$admit / UCBadmit$applications
plot( prop.admit , ylim=c(0,1) , pch=ifelse(UCBadmit$male==1,2,1) ,
ylab="probability admit" , xlab="case" )
lines( 1:12 , pred.admit$mu )
lines( 1:12 , pred.admit$mu.ci[1,] , lty=2 )
lines( 1:12 , pred.admit$mu.ci[2,] , lty=2 )
lines( 1:12 , pred.admit$obs.ci[1,] , lty=3 )
lines( 1:12 , pred.admit$obs.ci[2,] , lty=3 )
Run the code above in your browser using DataLab