glmmsel
Overview
An R package for generalised linear mixed model (GLMM) selection.
glmmsel uses an $\ell_0$ regulariser to simultaneously select fixed
and random effects. A hierarchical constraint is included that a random
effect cannot be selected unless its corresponding fixed effect is also
selected. Gaussian and binomial families are currently supported. See
this paper for more information.
Installation
To install the latest version from GitHub, run the following code:
devtools::install_github('ryan-thompson/glmmsel')Usage
The glmmsel() function fits a sparse GLMM over a sequence of the
regularisation parameter $\lambda$, with different values yielding
different sparsity levels. The cv.glmmsel() function provides a
convenient method for automatically cross-validating $\lambda$.
library(glmmsel)
# Generate some clustered data
n <- 100 # Number of observations
m <- 4 # Number of clusters
p <- 5 # Number of predictors
s.fix <- 2 # Number of nonzero fixed effects
s.rand <- 1 # Number of nonzero random effects
x <- matrix(rnorm(n * p), n, p) # Predictor matrix
beta <- c(rep(1, s.fix), rep(0, p - s.fix)) # True fixed effects
u <- cbind(matrix(rnorm(m * s.rand), m, s.rand), matrix(0, m, p - s.rand)) # True random effects
cluster <- sample(1:m, n, replace = TRUE) # Cluster labels
xb <- rowSums(x * sweep(u, 2, beta, '+')[cluster, ]) # x %*% (beta + u) matrix
y <- rnorm(n, xb) # Response vector
# Fit the ℓ0 regularisation path
fit <- glmmsel(x, y, cluster)
coef(fit, lambda = 10)## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] -0.12410477 1.128917 1.053438 0 0 0
## [2,] 0.15875835 1.128917 1.053438 0 0 0
## [3,] -0.01088924 1.128917 1.053438 0 0 0
## [4,] 0.09670996 1.128917 1.053438 0 0 0# Cross-validate the ℓ0 regularisation path
fit <- cv.glmmsel(x, y, cluster)
coef(fit)## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] -0.12410477 1.128917 1.053438 0 0 0
## [2,] 0.15875835 1.128917 1.053438 0 0 0
## [3,] -0.01088924 1.128917 1.053438 0 0 0
## [4,] 0.09670996 1.128917 1.053438 0 0 0Documentation
See the package vignette or reference manual.