```
set.seed(1010)
n = 1000
p = 100
nzc = trunc(p/10)
x = matrix(rnorm(n * p), n, p)
beta = rnorm(nzc)
fx = x[, seq(nzc)] %*% beta
eps = rnorm(n) * 5
y = drop(fx + eps)
px = exp(fx)
px = px/(1 + px)
ly = rbinom(n = length(px), prob = px, size = 1)
set.seed(1011)
cvob1 = cv.glmnet(x, y)
plot(cvob1)
coef(cvob1)
predict(cvob1, newx = x[1:5, ], s = "lambda.min")
title("Gaussian Family", line = 2.5)
set.seed(1011)
cvob1a = cv.glmnet(x, y, type.measure = "mae")
plot(cvob1a)
title("Gaussian Family", line = 2.5)
set.seed(1011)
par(mfrow = c(2, 2), mar = c(4.5, 4.5, 4, 1))
cvob2 = cv.glmnet(x, ly, family = "binomial")
plot(cvob2)
title("Binomial Family", line = 2.5)
frame()
set.seed(1011)
cvob3 = cv.glmnet(x, ly, family = "binomial", type.measure = "class")
plot(cvob3)
title("Binomial Family", line = 2.5)
if (FALSE) {
cvob1r = cv.glmnet(x, y, relax = TRUE)
plot(cvob1r)
predict(cvob1r, newx = x[, 1:5])
set.seed(1011)
cvob3a = cv.glmnet(x, ly, family = "binomial", type.measure = "auc")
plot(cvob3a)
title("Binomial Family", line = 2.5)
set.seed(1011)
mu = exp(fx/10)
y = rpois(n, mu)
cvob4 = cv.glmnet(x, y, family = "poisson")
plot(cvob4)
title("Poisson Family", line = 2.5)
# Multinomial
n = 500
p = 30
nzc = trunc(p/10)
x = matrix(rnorm(n * p), n, p)
beta3 = matrix(rnorm(30), 10, 3)
beta3 = rbind(beta3, matrix(0, p - 10, 3))
f3 = x %*% beta3
p3 = exp(f3)
p3 = p3/apply(p3, 1, sum)
g3 = glmnet:::rmult(p3)
set.seed(10101)
cvfit = cv.glmnet(x, g3, family = "multinomial")
plot(cvfit)
title("Multinomial Family", line = 2.5)
# Cox
beta = rnorm(nzc)
fx = x[, seq(nzc)] %*% beta/3
hx = exp(fx)
ty = rexp(n, hx)
tcens = rbinom(n = n, prob = 0.3, size = 1) # censoring indicator
y = cbind(time = ty, status = 1 - tcens) # y=Surv(ty,1-tcens) with library(survival)
foldid = sample(rep(seq(10), length = n))
fit1_cv = cv.glmnet(x, y, family = "cox", foldid = foldid)
plot(fit1_cv)
title("Cox Family", line = 2.5)
# Parallel
require(doMC)
registerDoMC(cores = 4)
x = matrix(rnorm(1e+05 * 100), 1e+05, 100)
y = rnorm(1e+05)
system.time(cv.glmnet(x, y))
system.time(cv.glmnet(x, y, parallel = TRUE))
}
```

Run the code above in your browser using DataCamp Workspace