Produce compositional predictions out of a gstat::gstat()
prediction
gsi.gstatCokriging2compo(COKresult, ...)# S3 method for default
gsi.gstatCokriging2compo(COKresult, ...)
# S3 method for data.frame
gsi.gstatCokriging2compo(
COKresult,
V = NULL,
orignames = NULL,
tol = 1e-12,
nscore = FALSE,
gg = NULL,
...
)
# S3 method for default
gsi.gstatCokriging2rmult(COKresult, ...)
# S3 method for data.frame
gsi.gstatCokriging2rmult(COKresult, nscore = FALSE, gg = NULL, ...)
an (N,D)-object of class c("spatialGridAcomp","acomp")
with the predictions, together with an extra attribute "krigVar" containing the cokriging covariance matrices in an (N, D, D)-array; here N=number of interpolated locations, D=number of original components of the composition
output of a gstat::predict.gstat()
cokriging,
typically of class "data.frame", sp::SpatialPointsDataFrame()
,
sp::SpatialGridDataFrame()
or sp::SpatialPixelsDataFrame()
further arguments needed for nscore (deprecated)
string or matrix describing which logratio was applied ("ilr", "alr", or a matrix computing the ilr corrdinates; clr is not allowed!)
names of the original components (optional, but recommended)
for generalized inversion of the matrix (rarely touched!)
boolean, were the data normal score-transformed? (deprecated)
in the case that normal score transformation was applied, provide the gstat object! (deprecated)
default
: Reorganisation of cokriged compositions
data.frame
: Reorganisation of cokriged compositions
default
: Reorganisation of cokriged multivariate data
data.frame
: Reorganisation of cokriged multivariate data
image_cokriged.spatialGridRmult()
for an example