Construct a regionalized multivariate data container to be used for Gaussian-based geostatistics: variogram modelling, cokriging and simulation.
make.gmMultivariateGaussianSpatialModel(
data,
coords = attr(data, "coords"),
model = NULL,
beta = model$beta,
formula = model$formula,
ng = NULL,
nmax = ng$nmax,
nmin = ng$nmin,
omax = ng$omax,
maxdist = ng$maxdist,
force = ng$force
)A "gmSpatialModel" object with all information provided appropriately structured. See gmSpatialModel.
either a data set of any data.frame similar class, or else a sp::SpatialPointsDataFrame() containing it
the coordinates of the sampling locations, if no SpatialPointsDataFrame was provided
a variogram model, of any relevant class
(see formula) the coefficients of dependence of the mean of the random field, if these are known; e.g. if formula=~1 constant mean,
and the mean is indeed known, beta would be a compositional mean; seldom used directly
a formula without left-hand-side term, e.g. ~1 or ~Easting+Northing, specifying what do we know of the
dependence of the mean of the random field; this follows the same ideas than in gstat::gstat()
optional neighborhood information, typically created with KrigingNeighbourhood()
optional, neighborhood description: maximum number of data points per cokriging system
optional, neighborhood description: minimum number of data points per cokriging system
optional, neighborhood description: maximum number of data points per cokriging system per quadrant/octant
optional, neighborhood description: maximum radius of the search neighborhood
optional logical, neighborhood description: if not nmin points are found inside maxdist radius,
keep searching. This and all preceding arguments for neighborhood definition are borrowed from gstat::gstat()
SequentialSimulation(), TurningBands() or CholeskyDecomposition() for specifying the exact
simulation method and its parameters, predict_gmSpatialModel for running predictions or simulations
Other gmSpatialModel:
Predict(),
as.gmSpatialModel(),
gmSpatialModel-class,
make.gmCompositionalGaussianSpatialModel(),
make.gmCompositionalMPSSpatialModel()
data("jura", package="gstat")
X = jura.pred[,1:2]
Zc = jura.pred[,7:13]
make.gmMultivariateGaussianSpatialModel(data=Zc, coords=X)
Run the code above in your browser using DataLab