# NOT RUN {
## These are long running examples that use parallel computing!
# These examples use the data 'eurusd' which comes with the
# package, but in a scaled form (similar to Kalliovirta et al. 2016).
data(eurusd, package="gmvarkit")
data <- cbind(10*eurusd[,1], 100*eurusd[,2])
colnames(data) <- colnames(eurusd)
# GMVAR(1,2) model: 10 estimation rounds with seeds set
# for reproducibility
fit12 <- fitGMVAR(data, p=1, M=2, ncalls=10, seeds=1:10)
fit12
plot(fit12)
summary(fit12)
# GMVAR(2,2) model with mean parametrization
fit22 <- fitGMVAR(data, p=2, M=2, parametrization="mean")
fit22
# GMVAR(2,2) model with autoregressive parameters restricted
# to be the same for both regimes
C_mat <- rbind(diag(2*2^2), diag(2*2^2))
fit22c <- fitGMVAR(data, p=2, M=2, constraints=C_mat)
fit22c
# GMVAR(2,2) model with autoregressive parameters restricted
# to be the same for both regimes and non-diagonl elements
# the coefficient matrices constrained to zero. Estimation
# with only 10 estimation rounds.
tmp <- matrix(c(1, rep(0, 10), 1, rep(0, 8), 1, rep(0, 10), 1),
nrow=2*2^2, byrow=FALSE)
C_mat2 <- rbind(tmp, tmp)
fit22c2 <- fitGMVAR(data, p=2, M=2, constraints=C_mat2, ncalls=10)
fit22c2
# }
Run the code above in your browser using DataLab