get_regime_means
calculates regime means \(\mu_{m} = (I - \sum A)^(-1))\)
from the given parameter vector.
get_regime_means_int(p, M, d, params, parametrization = c("intercept",
"mean"), constraints = NULL)
a positive integer specifying the autoregressive order of the model.
a positive integer specifying the number of mixture components.
number of time series in the system.
a real valued vector specifying the parameter values. Should be size \(((M(pd^2+d+d(d+1)/2+1)-1)x1)\) and have form \(\theta\)\( = \)(\(\upsilon\)\(_{1}\), ...,\(\upsilon\)\(_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where:
\(\upsilon\)\(_{m}\) \( = (\phi_{m,0},\)\(\phi\)\(_{m}\)\(,\sigma_{m})\)
\(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p})\)
and \(\sigma_{m} = vech(\Omega_{m})\), m=1,...,M.
Above \(\phi_{m,0}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\):th coefficient matrix of the \(m\):th
mixture component, \(\Omega_{m}\) denotes the error term covariance matrix of the \(m\):th mixture component and \(\alpha_{m}\) is the
mixing weight parameter.
If parametrization=="mean"
, just replace each \(\phi_{m,0}\) with regimewise mean \(\mu_{m}\).
\(vec()\) is vectorization operator that stacks columns of a given matrix into a vector. \(vech()\) stacks columns
of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector.
The notations are in line with the cited article by KMS (2016).
"mean"
or "intercept"
determining whether the model is parametrized with regime means \(\mu_{m}\) or
intercept parameters \(\phi_{m,0}\), m=1,...,M. Default is "intercept"
.
a size \((Mpd^2 x q)\) constraint matrix \(C\) specifying general linear constraints
to the autoregressive parameters. We consider constraints of form
(\(\phi\)\(_{1}\)\(,...,\)\(\phi\)\(_{M}) = \)\(C \psi\),
where \(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p}) (pd^2 x 1), m=1,...,M\)
contains the coefficient matrices and \(\psi\) \((q x 1)\) contains the constrained parameters.
For example, to restrict the AR-parameters to be the same for all regimes, set \(C\)=
[I:...:I
]' \((Mpd^2 x pd^2)\) where I = diag(p*d^2)
.
Ignore (or set to NULL
) if linear constraints should not be employed.
Returns a \((dxM)\) matrix containing regime mean \(\mu_{m}\) in the m:th column, \(m=1,..,M\).
No argument checks!
Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.
Lutkepohl H. 2005. New Introduction to Multiple Time Series Analysis, Springer.