get_test_Omega
computes the covariance matrix Omega used in the
quantile residuals tests described by Kalliovirta and Saikkonen 2010.
get_test_Omega(data, p, M, params, conditional, parametrization,
constraints, g, dim_g)
a matrix or class 'ts'
object with d>1
columns. Each column is taken to represent
a single time series. NA
values are not supported.
a positive integer specifying the autoregressive order of the model.
a positive integer specifying the number of mixture components.
a real valued vector specifying the parameter values.
Should be size \(((M(pd^2+d+d(d+1)/2+1)-1)x1)\) and have form \(\theta\)\( = \)(\(\upsilon\)\(_{1}\), ...,\(\upsilon\)\(_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where:
\(\upsilon\)\(_{m}\) \( = (\phi_{m,0},\)\(\phi\)\(_{m}\)\(,\sigma_{m})\)
\(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p})\)
and \(\sigma_{m} = vech(\Omega_{m})\), m=1,...,M.
Should be size \(((M(d+d(d+1)/2+1)+q-1)x1)\) and have form \(\theta\)\( = (\phi_{1,0},...,\phi_{M,0},\)\(\psi\) \(,\sigma_{1},...,\sigma_{M},\alpha_{1},...,\alpha_{M-1})\), where:
\(\psi\) \((qx1)\) satisfies (\(\phi\)\(_{1}\)\(,...,\) \(\phi\)\(_{M}) =\) \(C \psi\). Here \(C\) is \((Mpd^2xq)\) constraint matrix.
Above \(\phi_{m,0}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\):th coefficient matrix of the \(m\):th
mixture component, \(\Omega_{m}\) denotes the error term covariance matrix of the \(m\):th mixture component and
\(\alpha_{m}\) is the mixing weight parameter.
If parametrization=="mean"
, just replace each \(\phi_{m,0}\) with regimewise mean \(\mu_{m}\).
\(vec()\) is vectorization operator that stacks columns of a given matrix into a vector. \(vech()\) stacks columns
of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector.
The notations are in line with the cited article by Kalliovirta, Meitz and Saikkonen (2016).
a logical argument specifying whether the conditional or exact log-likelihood function
should be used. Default is TRUE
.
"mean"
or "intercept"
determining whether the model is parametrized with regime means \(\mu_{m}\) or
intercept parameters \(\phi_{m,0}\), m=1,...,M. Default is "intercept"
.
a size \((Mpd^2 x q)\) constraint matrix \(C\) specifying general linear constraints
to the autoregressive parameters. We consider constraints of form
(\(\phi\)\(_{1}\)\(,...,\)\(\phi\)\(_{M}) = \)\(C \psi\),
where \(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p}) (pd^2 x 1), m=1,...,M\)
contains the coefficient matrices and \(\psi\) \((q x 1)\) contains the constrained parameters.
For example, to restrict the AR-parameters to be the same for all regimes, set \(C\)=
[I:...:I
]' \((Mpd^2 x pd^2)\) where I = diag(p*d^2)
.
Ignore (or set to NULL
) if linear constraints should not be employed.
function g specifying the transformation.
output dimension of the transformation g
.
Returns the covariance matrix Omega described by Kalliovirta and Saikkonen 2010.
Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.
Kalliovirta L. and Saikkonen P. 2010. Reliable Residuals for Multivariate Nonlinear Time Series Models. Unpublished Revision of HECER Discussion Paper No. 247.