Learn R Programming

gmvarkit (version 1.1.1)

get_test_Omega: Compute covariance matrix Omega used in quantile residual tests

Description

get_test_Omega computes the covariance matrix Omega used in the quantile residuals tests described by Kalliovirta and Saikkonen 2010.

Usage

get_test_Omega(data, p, M, params, conditional, parametrization,
  constraints, g, dim_g)

Arguments

data

a matrix or class 'ts' object with d>1 columns. Each column is taken to represent a single time series. NA values are not supported.

p

a positive integer specifying the autoregressive order of the model.

M

a positive integer specifying the number of mixture components.

params

a real valued vector specifying the parameter values.

For regular models:

Should be size \(((M(pd^2+d+d(d+1)/2+1)-1)x1)\) and have form \(\theta\)\( = \)(\(\upsilon\)\(_{1}\), ...,\(\upsilon\)\(_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where:

  • \(\upsilon\)\(_{m}\) \( = (\phi_{m,0},\)\(\phi\)\(_{m}\)\(,\sigma_{m})\)

  • \(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p})\)

  • and \(\sigma_{m} = vech(\Omega_{m})\), m=1,...,M.

For constrained models:

Should be size \(((M(d+d(d+1)/2+1)+q-1)x1)\) and have form \(\theta\)\( = (\phi_{1,0},...,\phi_{M,0},\)\(\psi\) \(,\sigma_{1},...,\sigma_{M},\alpha_{1},...,\alpha_{M-1})\), where:

  • \(\psi\) \((qx1)\) satisfies (\(\phi\)\(_{1}\)\(,...,\) \(\phi\)\(_{M}) =\) \(C \psi\). Here \(C\) is \((Mpd^2xq)\) constraint matrix.

Above \(\phi_{m,0}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\):th coefficient matrix of the \(m\):th mixture component, \(\Omega_{m}\) denotes the error term covariance matrix of the \(m\):th mixture component and \(\alpha_{m}\) is the mixing weight parameter. If parametrization=="mean", just replace each \(\phi_{m,0}\) with regimewise mean \(\mu_{m}\). \(vec()\) is vectorization operator that stacks columns of a given matrix into a vector. \(vech()\) stacks columns of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector. The notations are in line with the cited article by Kalliovirta, Meitz and Saikkonen (2016).

conditional

a logical argument specifying whether the conditional or exact log-likelihood function should be used. Default is TRUE.

parametrization

"mean" or "intercept" determining whether the model is parametrized with regime means \(\mu_{m}\) or intercept parameters \(\phi_{m,0}\), m=1,...,M. Default is "intercept".

constraints

a size \((Mpd^2 x q)\) constraint matrix \(C\) specifying general linear constraints to the autoregressive parameters. We consider constraints of form (\(\phi\)\(_{1}\)\(,...,\)\(\phi\)\(_{M}) = \)\(C \psi\), where \(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p}) (pd^2 x 1), m=1,...,M\) contains the coefficient matrices and \(\psi\) \((q x 1)\) contains the constrained parameters. For example, to restrict the AR-parameters to be the same for all regimes, set \(C\)= [I:...:I]' \((Mpd^2 x pd^2)\) where I = diag(p*d^2). Ignore (or set to NULL) if linear constraints should not be employed.

g

function g specifying the transformation.

dim_g

output dimension of the transformation g.

Value

Returns the covariance matrix Omega described by Kalliovirta and Saikkonen 2010.

References

  • Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.

  • Kalliovirta L. and Saikkonen P. 2010. Reliable Residuals for Multivariate Nonlinear Time Series Models. Unpublished Revision of HECER Discussion Paper No. 247.