Learn R Programming

gmvarkit (version 1.1.1)

uncond_moments_int: Calculate the unconditional mean, variance, the first p autocovariances, and the first p autocorrelations of the GMVAR process.

Description

uncond_moments_int calculates the unconditional mean, variance, first p autocovariances, and first p autocorrelations of the GMVAR process

Usage

uncond_moments_int(p, M, d, params, parametrization = c("intercept",
  "mean"), constraints = NULL)

Arguments

p

a positive integer specifying the autoregressive order of the model.

M

a positive integer specifying the number of mixture components.

d

number of time series in the system.

params

a real valued vector specifying the parameter values.

For regular models:

Should be size \(((M(pd^2+d+d(d+1)/2+1)-1)x1)\) and have form \(\theta\)\( = \)(\(\upsilon\)\(_{1}\), ...,\(\upsilon\)\(_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where:

  • \(\upsilon\)\(_{m}\) \( = (\phi_{m,0},\)\(\phi\)\(_{m}\)\(,\sigma_{m})\)

  • \(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p})\)

  • and \(\sigma_{m} = vech(\Omega_{m})\), m=1,...,M.

For constrained models:

Should be size \(((M(d+d(d+1)/2+1)+q-1)x1)\) and have form \(\theta\)\( = (\phi_{1,0},...,\phi_{M,0},\)\(\psi\) \(,\sigma_{1},...,\sigma_{M},\alpha_{1},...,\alpha_{M-1})\), where:

  • \(\psi\) \((qx1)\) satisfies (\(\phi\)\(_{1}\)\(,...,\) \(\phi\)\(_{M}) =\) \(C \psi\). Here \(C\) is \((Mpd^2xq)\) constraint matrix.

Above \(\phi_{m,0}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\):th coefficient matrix of the \(m\):th mixture component, \(\Omega_{m}\) denotes the error term covariance matrix of the \(m\):th mixture component and \(\alpha_{m}\) is the mixing weight parameter. If parametrization=="mean", just replace each \(\phi_{m,0}\) with regimewise mean \(\mu_{m}\). \(vec()\) is vectorization operator that stacks columns of a given matrix into a vector. \(vech()\) stacks columns of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector. The notations are in line with the cited article by Kalliovirta, Meitz and Saikkonen (2016).

parametrization

"mean" or "intercept" determining whether the model is parametrized with regime means \(\mu_{m}\) or intercept parameters \(\phi_{m,0}\), m=1,...,M. Default is "intercept".

constraints

a size \((Mpd^2 x q)\) constraint matrix \(C\) specifying general linear constraints to the autoregressive parameters. We consider constraints of form (\(\phi\)\(_{1}\)\(,...,\)\(\phi\)\(_{M}) = \)\(C \psi\), where \(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p}) (pd^2 x 1), m=1,...,M\) contains the coefficient matrices and \(\psi\) \((q x 1)\) contains the constrained parameters. For example, to restrict the AR-parameters to be the same for all regimes, set \(C\)= [I:...:I]' \((Mpd^2 x pd^2)\) where I = diag(p*d^2). Ignore (or set to NULL) if linear constraints should not be employed.

Value

Returns a list with three components:

$uncond_mean

a length d vector containing the unconditional mean of the process.

$autocovs

an \((d x d x p+1)\) array containing the lag 0,1,...,p autocovariances of the process. The subset [, , j] contains the lag j-1 autocovariance matrix (lag zero for the variance).

$autocors

the autocovariance matrices scaled to autocorrelation matrices.

Details

The unconditional moments are based on the stationary distribution of the process.

References

  • Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.

  • Lutkepohl H. 2005. New Introduction to Multiple Time Series Analysis, Springer.