loglikelihood
computes log-likelihood of a GMVAR model using parameter vector
instead of an object of class 'gmvar'. Exists for convenience if one wants to for example
employ other estimation algorithms than the ones used in fitGMVAR
. Use minval
to
control what happens when the parameter vector is outside the parameter space.
loglikelihood(
data,
p,
M,
params,
conditional = TRUE,
parametrization = c("intercept", "mean"),
constraints = NULL,
minval = NA
)
a matrix or class 'ts'
object with d>1
columns. Each column is taken to represent
a single time series. NA
values are not supported.
a positive integer specifying the autoregressive order of the model.
a positive integer specifying the number of mixture components.
a real valued vector specifying the parameter values.
Should be size \(((M(pd^2+d+d(d+1)/2+1)-1)x1)\) and have form \(\theta\)\( = \)(\(\upsilon\)\(_{1}\), ...,\(\upsilon\)\(_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where:
\(\upsilon\)\(_{m}\) \( = (\phi_{m,0},\)\(\phi\)\(_{m}\)\(,\sigma_{m})\)
\(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p})\)
and \(\sigma_{m} = vech(\Omega_{m})\), m=1,...,M.
Should be size \(((M(d+d(d+1)/2+1)+q-1)x1)\) and have form \(\theta\)\( = (\phi_{1,0},...,\phi_{M,0},\)\(\psi\) \(,\sigma_{1},...,\sigma_{M},\alpha_{1},...,\alpha_{M-1})\), where:
\(\psi\) \((qx1)\) satisfies (\(\phi\)\(_{1}\)\(,...,\) \(\phi\)\(_{M}) =\) \(C \psi\). Here \(C\) is \((Mpd^2xq)\) constraint matrix.
Above, \(\phi_{m,0}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\):th coefficient matrix of the \(m\):th
mixture component, \(\Omega_{m}\) denotes the error term covariance matrix of the \(m\):th mixture component, and
\(\alpha_{m}\) is the mixing weight parameter.
If parametrization=="mean"
, just replace each \(\phi_{m,0}\) with regimewise mean \(\mu_{m}\).
\(vec()\) is vectorization operator that stacks columns of a given matrix into a vector. \(vech()\) stacks columns
of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector.
The notation is in line with the cited article by Kalliovirta, Meitz and Saikkonen (2016) introducing the GMVAR model.
a logical argument specifying whether the conditional or exact log-likelihood function should be used.
"mean"
or "intercept"
determining whether the model is parametrized with regime means \(\mu_{m}\) or
intercept parameters \(\phi_{m,0}\), m=1,...,M.
a size \((Mpd^2 x q)\) constraint matrix \(C\) specifying general linear constraints
to the autoregressive parameters. We consider constraints of form
(\(\phi\)\(_{1}\)\(,...,\)\(\phi\)\(_{M}) = \)\(C \psi\),
where \(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p}) (pd^2 x 1), m=1,...,M\)
contains the coefficient matrices and \(\psi\) \((q x 1)\) contains the constrained parameters.
For example, to restrict the AR-parameters to be the same for all regimes, set \(C\)=
[I:...:I
]' \((Mpd^2 x pd^2)\) where I = diag(p*d^2)
.
Ignore (or set to NULL
) if linear constraints should not be employed.
the value that will be returned if the parameter vector does not lie in the parameter space (excluding the identification condition).
Returns log-likelihood if params
is in the parameters space and minval
if not.
loglikelihood_int
takes use of the function dmvn
from the package mvnfast
to cut down computation time. Values extremely close to zero are handled with the package Brobdingnag
.
Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.
Lutkepohl H. 2005. New Introduction to Multiple Time Series Analysis, Springer.
# NOT RUN {
data <- cbind(10*eurusd[,1], 100*eurusd[,2])
params222 <- c(-11.904, 154.684, 1.314, 0.145, 0.094, 1.292, -0.389,
-0.070, -0.109, -0.281, 0.920, -0.025, 4.839, 11.633, 124.983, 1.248,
0.077, -0.040, 1.266, -0.272, -0.074, 0.034, -0.313, 5.855, 3.570,
9.838, 0.740)
loglikelihood(data=data, p=2, M=2, params=params222, parametrization="mean")
# }
Run the code above in your browser using DataLab