Learn R Programming

gmvarkit (version 1.2.0)

standard_errors: Calculate standard errors for estimates of GMVAR model

Description

standard_errors numerically calculates approximate standard errors for the GMVAR model using square roots of the diagonal of inverse of observed information matrix.

Usage

standard_errors(
  data,
  p,
  M,
  params,
  conditional = TRUE,
  parametrization = c("intercept", "mean"),
  constraints = NULL,
  structural_pars = NULL,
  minval
)

Arguments

data

a matrix or class 'ts' object with d>1 columns. Each column is taken to represent a single time series. NA values are not supported.

p

a positive integer specifying the autoregressive order of the model.

M

a positive integer specifying the number of mixture components.

params

a real valued vector specifying the parameter values.

For unconstrained models:

Should be size \(((M(pd^2+d+d(d+1)/2+1)-1)x1)\) and have form \(\theta\)\( = \)(\(\upsilon\)\(_{1}\), ...,\(\upsilon\)\(_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where

  • \(\upsilon\)\(_{m}\) \( = (\phi_{m,0},\)\(\phi\)\(_{m}\)\(,\sigma_{m})\)

  • \(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p})\)

  • and \(\sigma_{m} = vech(\Omega_{m})\), m=1,...,M.

For constrained models:

Should be size \(((M(d+d(d+1)/2+1)+q-1)x1)\) and have form \(\theta\)\( = (\phi_{1,0},...,\phi_{M,0},\)\(\psi\) \(,\sigma_{1},...,\sigma_{M},\alpha_{1},...,\alpha_{M-1})\), where

  • \(\psi\) \((qx1)\) satisfies (\(\phi\)\(_{1}\)\(,...,\) \(\phi\)\(_{M}) =\) \(C \psi\) where \(C\) is \((Mpd^2xq)\) constraint matrix.

For structural GMVAR model:

Should have the form \(\theta\)\( = (\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(_{1},...,\)\(\phi\)\(_{M}, vec(W),\)\(\lambda\)\(_{2},...,\)\(\lambda\)\(_{M},\alpha_{1},...,\alpha_{M-1})\), where

  • \(\lambda\)\(_{m}=(\lambda_{m1},...,\lambda_{md})\) contains the eigenvalues of the \(m\)th mixture component.

If AR parameters are constrained:

Replace \(\phi\)\(_{1}\)\(,...,\) \(\phi\)\(_{M}\) with \(\psi\) \((qx1)\) that satisfies (\(\phi\)\(_{1}\)\(,...,\) \(\phi\)\(_{M}) =\) \(C \psi\), as above.

If \(W\) is constrained:

Remove the zeros from \(vec(W)\) and make sure the other entries satisfy the sign constraints.

If \(\lambda_{mi}\) are constrained:

Replace \(\lambda\)\(_{2},...,\)\(\lambda\)\(_{M}\) with \(\gamma\) \((rx1)\) that satisfies (\(\lambda\)\(_{2}\)\(,...,\) \(\lambda\)\(_{M}) =\) \(C_{\lambda} \gamma\) where \(C_{\lambda}\) is a \((d(M-1) x r)\) constraint matrix.

Above, \(\phi_{m,0}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\)th coefficient matrix of the \(m\)th mixture component, \(\Omega_{m}\) denotes the error term covariance matrix of the \(m\):th mixture component, and \(\alpha_{m}\) is the mixing weight parameter. The \(W\) and \(\lambda_{mi}\) are structural parameters replacing the error term covariance matrices (see Virolainen, 2020). If \(M=1\), \(\alpha_{m}\) and \(\lambda_{mi}\) are dropped. If parametrization=="mean", just replace each \(\phi_{m,0}\) with regimewise mean \(\mu_{m}\). \(vec()\) is vectorization operator that stacks columns of a given matrix into a vector. \(vech()\) stacks columns of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector. The notation is in line with the cited article by Kalliovirta, Meitz and Saikkonen (2016) introducing the GMVAR model.

conditional

a logical argument specifying whether the conditional or exact log-likelihood function should be used.

parametrization

"mean" or "intercept" determining whether the model is parametrized with regime means \(\mu_{m}\) or intercept parameters \(\phi_{m,0}\), m=1,...,M.

constraints

a size \((Mpd^2 x q)\) constraint matrix \(C\) specifying general linear constraints to the autoregressive parameters. We consider constraints of form (\(\phi\)\(_{1}\)\(,...,\)\(\phi\)\(_{M}) = \)\(C \psi\), where \(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p}) (pd^2 x 1), m=1,...,M\), contains the coefficient matrices and \(\psi\) \((q x 1)\) contains the related parameters. For example, to restrict the AR-parameters to be the same for all regimes, set \(C\)= [I:...:I]' \((Mpd^2 x pd^2)\) where I = diag(p*d^2). Ignore (or set to NULL) if linear constraints should not be employed.

structural_pars

If NULL a reduced form model is considered. For structural model, should be a list containing the following elements:

  • W - a \((dxd)\) matrix with its entries imposing constraints on \(W\): NA indicating that the element is unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict negative sign constraint, and zero indicating that the element is constrained to zero.

  • C_lambda - a \((d(M-1) x r)\) constraint matrix that satisfies (\(\lambda\)\(_{2}\)\(,...,\) \(\lambda\)\(_{M}) =\) \(C_{\lambda} \gamma\) where \(\gamma\) is the new \((r x 1)\) parameter subject to which the model is estimated (similarly to AR parameter constraints). The entries of C_lambda must be either positive or zero. Ignore (or set to NULL) if the eigenvalues \(\lambda_{mi}\) should not be constrained.

See Virolainen (2020) for the conditions required to identify the shocks and for the B-matrix as well (it is \(W\) times a time-varying diagonal matrix with positive diagonal entries).

minval

the value that will be returned if the parameter vector does not lie in the parameter space (excluding the identification condition).

Value

A vector containing the approximate standard errors of the estimates.

References

  • Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.

  • Virolainen S. 2020. Structural Gaussian mixture vector autoregressive model. Unpublished working paper, available as arXiv:2007.04713.