loglikelihood
computes log-likelihood of a GMVAR model using parameter vector
instead of an object of class 'gmvar'. Exists for convenience if one wants to for example
employ other estimation algorithms than the ones used in fitGMVAR
. Use minval
to
control what happens when the parameter vector is outside the parameter space.
loglikelihood(
data,
p,
M,
params,
conditional = TRUE,
parametrization = c("intercept", "mean"),
constraints = NULL,
same_means = NULL,
structural_pars = NULL,
minval = NA,
stat_tol = 0.001,
posdef_tol = 1e-08
)
a matrix or class 'ts'
object with d>1
columns. Each column is taken to represent
a single time series. NA
values are not supported.
a positive integer specifying the autoregressive order of the model.
a positive integer specifying the number of mixture components.
a real valued vector specifying the parameter values.
Should be size \(((M(pd^2+d+d(d+1)/2+1)-1)x1)\) and have the form \(\theta\)\( = \)(\(\upsilon\)\(_{1}\), ...,\(\upsilon\)\(_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where
\(\upsilon\)\(_{m}\) \( = (\phi_{m,0},\)\(\phi\)\(_{m}\)\(,\sigma_{m})\)
\(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p})\)
and \(\sigma_{m} = vech(\Omega_{m})\), m=1,...,M.
Should be size \(((M(d+d(d+1)/2+1)+q-1)x1)\) and have the form \(\theta\)\( = (\phi_{1,0},...,\phi_{M,0},\)\(\psi\), \(\sigma_{1},...,\sigma_{M},\alpha_{1},...,\alpha_{M-1})\), where
\(\psi\) \((qx1)\) satisfies (\(\phi\)\(_{1}\)\(,...,\) \(\phi\)\(_{M}) =\) \(C \psi\) where \(C\) is \((Mpd^2xq)\) constraint matrix.
Should have the form \(\theta\)\( = (\)\(\mu\),\(\psi\), \(\sigma_{1},...,\sigma_{M},\alpha_{1},...,\alpha_{M-1})\), where
\(\mu\)\(= (\mu_{1},...,\mu_{g})\) where \(\mu_{i}\) is the mean parameter for group \(i\) and \(g\) is the number of groups.
If AR constraints are employed, \(\psi\) is as for constrained models, and if AR constraints are not employed, \(\psi\)\( = \) (\(\phi\)\(_{1}\)\(,...,\)\(\phi\)\(_{M})\).
Should have the form \(\theta\)\( = (\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(_{1},...,\)\(\phi\)\(_{M}, vec(W),\)\(\lambda\)\(_{2},...,\)\(\lambda\)\(_{M},\alpha_{1},...,\alpha_{M-1})\), where
\(\lambda\)\(_{m}=(\lambda_{m1},...,\lambda_{md})\) contains the eigenvalues of the \(m\)th mixture component.
Replace \(\phi\)\(_{1}\)\(,...,\) \(\phi\)\(_{M}\) with \(\psi\) \((qx1)\) that satisfies (\(\phi\)\(_{1}\)\(,...,\) \(\phi\)\(_{M}) =\) \(C \psi\), as above.
Replace \((\phi_{1,0},...,\phi_{M,0})\) with \((\mu_{1},...,\mu_{g})\), as above.
Remove the zeros from \(vec(W)\) and make sure the other entries satisfy the sign constraints.
Replace \(\lambda\)\(_{2},...,\)\(\lambda\)\(_{M}\) with \(\gamma\) \((rx1)\) that satisfies (\(\lambda\)\(_{2}\)\(,...,\) \(\lambda\)\(_{M}) =\) \(C_{\lambda} \gamma\) where \(C_{\lambda}\) is a \((d(M-1) x r)\) constraint matrix.
Above, \(\phi_{m,0}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\)th coefficient matrix of the \(m\)th
mixture component, \(\Omega_{m}\) denotes the error term covariance matrix of the \(m\):th mixture component, and
\(\alpha_{m}\) is the mixing weight parameter. The \(W\) and \(\lambda_{mi}\) are structural parameters replacing the
error term covariance matrices (see Virolainen, 2020). If \(M=1\), \(\alpha_{m}\) and \(\lambda_{mi}\) are dropped.
If parametrization=="mean"
, just replace each \(\phi_{m,0}\) with regimewise mean \(\mu_{m}\).
\(vec()\) is vectorization operator that stacks columns of a given matrix into a vector. \(vech()\) stacks columns
of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector.
The notation is in line with the cited article by Kalliovirta, Meitz and Saikkonen (2016) introducing the GMVAR model.
a logical argument specifying whether the conditional or exact log-likelihood function should be used.
"intercept"
or "mean"
determining whether the model is parametrized with intercept
parameters \(\phi_{m,0}\) or regime means \(\mu_{m}\), m=1,...,M.
a size \((Mpd^2 x q)\) constraint matrix \(C\) specifying general linear constraints
to the autoregressive parameters. We consider constraints of form
(\(\phi\)\(_{1}\)\(,...,\)\(\phi\)\(_{M}) = \)\(C \psi\),
where \(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p}) (pd^2 x 1), m=1,...,M\),
contains the coefficient matrices and \(\psi\) \((q x 1)\) contains the related parameters.
For example, to restrict the AR-parameters to be the same for all regimes, set \(C\)=
[I:...:I
]' \((Mpd^2 x pd^2)\) where I = diag(p*d^2)
.
Ignore (or set to NULL
) if linear constraints should not be employed.
Restrict the mean parameters of some regimes to be the same? Provide a list of numeric vectors
such that each numeric vector contains the regimes that should share the common mean parameters. For instance, if
M=3
, the argument list(1, 2:3)
restricts the mean parameters of the second and third regime to be
the same but the first regime has freely estimated (unconditional) mean. Ignore or set to NULL
if mean parameters
should not be restricted to be the same among any regimes. This constraint is available only for mean parametrized models;
that is, when parametrization="mean"
.
If NULL
a reduced form model is considered. For structural model, should be a list containing
the following elements:
W
- a \((dxd)\) matrix with its entries imposing constraints on \(W\): NA
indicating that the element is
unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict
negative sign constraint, and zero indicating that the element is constrained to zero.
C_lambda
- a \((d(M-1) x r)\) constraint matrix that satisfies (\(\lambda\)\(_{2}\)\(,...,\)
\(\lambda\)\(_{M}) =\) \(C_{\lambda} \gamma\) where \(\gamma\) is the new \((r x 1)\)
parameter subject to which the model is estimated (similarly to AR parameter constraints). The entries of C_lambda
must be either positive or zero. Ignore (or set to NULL
) if the eigenvalues \(\lambda_{mi}\)
should not be constrained.
See Virolainen (2020) for the conditions required to identify the shocks and for the B-matrix as well (it is \(W\) times a time-varying diagonal matrix with positive diagonal entries).
the value that will be returned if the parameter vector does not lie in the parameter space (excluding the identification condition).
numerical tolerance for stationarity of the AR parameters: if the "bold A" matrix of any regime
has eigenvalues larger that 1 - stat_tol
the model is classified as non-stationary. Note that if the
tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.
numerical tolerance for positive definiteness of the error term covariance matrices: if the error term covariance matrix of any regime has eigenvalues smaller than this, the model is classified as not satisfying positive definiteness assumption. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.
Returns log-likelihood if params
is in the parameters space and minval
if not.
loglikelihood_int
takes use of the function dmvn
from the package mvnfast
.
Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.
L<U+00FC>tkepohl H. 2005. New Introduction to Multiple Time Series Analysis, Springer.
McElroy T. 2017. Computation of vector ARMA autocovariances. Statistics and Probability Letters, 124, 92-96.
Virolainen S. 2020. Structural Gaussian mixture vector autoregressive model. Unpublished working paper, available as arXiv:2007.04713.
# NOT RUN {
data <- cbind(10*eurusd[,1], 100*eurusd[,2])
# GMVAR(2, 2), d=2 model;
params222 <- c(-11.904, 154.684, 1.314, 0.145, 0.094, 1.292, -0.389,
-0.070, -0.109, -0.281, 0.920, -0.025, 4.839, 11.633, 124.983, 1.248,
0.077, -0.040, 1.266, -0.272, -0.074, 0.034, -0.313, 5.855, 3.570,
9.838, 0.740)
loglikelihood(data=data, p=2, M=2, params=params222, parametrization="mean")
# Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params222s <- c(1.03, 2.36, 1.79, 3, 1.25, 0.06, 0.04, 1.34, -0.29,
-0.08, -0.05, -0.36, 1.2, 0.05, 0.05, 1.3, -0.3, -0.1, -0.05, -0.4,
0.89, 0.72, -0.37, 2.16, 7.16, 1.3, 0.37)
W_222 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
loglikelihood(data=data, p=2, M=2, params=params222s, structural_pars=list(W=W_222))
# }
Run the code above in your browser using DataLab