Learn R Programming

gmvarkit (version 1.4.1)

pick_phi0: Pick \(\phi_{m,0}\) or \(\mu_{m}\), m=1,..,M vectors

Description

pick_phi0 picks the intercept or mean parameters from the given parameter vector.

Usage

pick_phi0(p, M, d, params, structural_pars = NULL)

Arguments

p

a positive integer specifying the autoregressive order of the model.

M

a positive integer specifying the number of mixture components.

d

the number of time series in the system.

params

a real valued vector specifying the parameter values.

For reduced form model:

Should be size \(((M(pd^2+d+d(d+1)/2+1)-1)x1)\) and have form \(\theta\)\( = \)(\(\upsilon\)\(_{1}\), ...,\(\upsilon\)\(_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where:

  • \(\upsilon\)\(_{m}\) \( = (\phi_{m,0},\)\(\phi\)\(_{m}\)\(,\sigma_{m})\)

  • \(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p})\)

  • and \(\sigma_{m} = vech(\Omega_{m})\), m=1,...,M.

For structural GMVAR model:

Should have the form \(\theta\)\( = (\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(_{1},...,\)\(\phi\)\(_{M}, vec(W),\)\(\lambda\)\(_{2},...,\)\(\lambda\)\(_{M},\alpha_{1},...,\alpha_{M-1})\), where

  • \(\lambda\)\(_{m}=(\lambda_{m1},...,\lambda_{md})\) contains the eigenvalues of the \(m\)th mixture component.

Above, \(\phi_{m,0}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\):th coefficient matrix of the \(m\):th mixture component, \(\Omega_{m}\) denotes the error term covariance matrix of the \(m\):th mixture component, and \(\alpha_{m}\) is the mixing weight parameter. The \(W\) and \(\lambda_{mi}\) are structural parameters replacing the error term covariance matrices (see Virolainen, 2020). If \(M=1\), \(\alpha_{m}\) and \(\lambda_{mi}\) are dropped.

If parametrization=="mean", just replace each \(\phi_{m,0}\) with the regimewise mean \(\mu_{m}\). \(vec()\) is vectorization operator that stacks columns of a given matrix into a vector. \(vech()\) stacks columns of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector. The notation is in line with the cited article by KMS (2016) introducing the GMVAR model.

structural_pars

If NULL a reduced form model is considered. For structural model, should be a list containing the following elements:

  • W - a \((dxd)\) matrix with its entries imposing constraints on \(W\): NA indicating that the element is unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict negative sign constraint, and zero indicating that the element is constrained to zero.

  • C_lambda - a \((d(M-1) x r)\) constraint matrix that satisfies (\(\lambda\)\(_{2}\)\(,...,\) \(\lambda\)\(_{M}) =\) \(C_{\lambda} \gamma\) where \(\gamma\) is the new \((r x 1)\) parameter subject to which the model is estimated (similarly to AR parameter constraints). The entries of C_lambda must be either positive or zero. Ignore (or set to NULL) if the eigenvalues \(\lambda_{mi}\) should not be constrained.

See Virolainen (2020) for the conditions required to identify the shocks and for the B-matrix as well (it is \(W\) times a time-varying diagonal matrix with positive diagonal entries).

Value

Returns a \((dxM)\) matrix containing \(\phi_{m,0}\) in the m:th column or \(\mu_{m}\) if the parameter vector is mean-parametrized, \(, m=1,..,M\).

Warning

No argument checks!

Details

Does not support constrained parameter vectors.

References

  • Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.

  • Virolainen S. 2020. Structural Gaussian mixture vector autoregressive model. Unpublished working paper, available as arXiv:2007.04713.