Learn R Programming

gmvarkit (version 1.4.1)

reform_structural_pars: Reform structural parameter vector into the "standard" form

Description

reform_structural_pars reforms (unconstrained) structural parameter vector into the form that corresponds to reduced form parameter vectors.

Usage

reform_structural_pars(p, M, d, params, structural_pars = NULL)

Arguments

p

a positive integer specifying the autoregressive order of the model.

M

a positive integer specifying the number of mixture components.

d

the number of time series in the system.

params

a real valued vector specifying the parameter values.

For unconstrained models:

Should be size \(((M(pd^2+d+d(d+1)/2+1)-1)x1)\) and have the form \(\theta\)\( = \)(\(\upsilon\)\(_{1}\), ...,\(\upsilon\)\(_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where

  • \(\upsilon\)\(_{m}\) \( = (\phi_{m,0},\)\(\phi\)\(_{m}\)\(,\sigma_{m})\)

  • \(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p})\)

  • and \(\sigma_{m} = vech(\Omega_{m})\), m=1,...,M.

For constrained models:

Should be size \(((M(d+d(d+1)/2+1)+q-1)x1)\) and have the form \(\theta\)\( = (\phi_{1,0},...,\phi_{M,0},\)\(\psi\), \(\sigma_{1},...,\sigma_{M},\alpha_{1},...,\alpha_{M-1})\), where

  • \(\psi\) \((qx1)\) satisfies (\(\phi\)\(_{1}\)\(,...,\) \(\phi\)\(_{M}) =\) \(C \psi\) where \(C\) is \((Mpd^2xq)\) constraint matrix.

For same_means models:

Should have the form \(\theta\)\( = (\)\(\mu\),\(\psi\), \(\sigma_{1},...,\sigma_{M},\alpha_{1},...,\alpha_{M-1})\), where

  • \(\mu\)\(= (\mu_{1},...,\mu_{g})\) where \(\mu_{i}\) is the mean parameter for group \(i\) and \(g\) is the number of groups.

  • If AR constraints are employed, \(\psi\) is as for constrained models, and if AR constraints are not employed, \(\psi\)\( = \) (\(\phi\)\(_{1}\)\(,...,\)\(\phi\)\(_{M})\).

For structural GMVAR model:

Should have the form \(\theta\)\( = (\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(_{1},...,\)\(\phi\)\(_{M}, vec(W),\)\(\lambda\)\(_{2},...,\)\(\lambda\)\(_{M},\alpha_{1},...,\alpha_{M-1})\), where

  • \(\lambda\)\(_{m}=(\lambda_{m1},...,\lambda_{md})\) contains the eigenvalues of the \(m\)th mixture component.

If AR parameters are constrained:

Replace \(\phi\)\(_{1}\)\(,...,\) \(\phi\)\(_{M}\) with \(\psi\) \((qx1)\) that satisfies (\(\phi\)\(_{1}\)\(,...,\) \(\phi\)\(_{M}) =\) \(C \psi\), as above.

If same_means:

Replace \((\phi_{1,0},...,\phi_{M,0})\) with \((\mu_{1},...,\mu_{g})\), as above.

If \(W\) is constrained:

Remove the zeros from \(vec(W)\) and make sure the other entries satisfy the sign constraints.

If \(\lambda_{mi}\) are constrained:

Replace \(\lambda\)\(_{2},...,\)\(\lambda\)\(_{M}\) with \(\gamma\) \((rx1)\) that satisfies (\(\lambda\)\(_{2}\)\(,...,\) \(\lambda\)\(_{M}) =\) \(C_{\lambda} \gamma\) where \(C_{\lambda}\) is a \((d(M-1) x r)\) constraint matrix.

Above, \(\phi_{m,0}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\)th coefficient matrix of the \(m\)th mixture component, \(\Omega_{m}\) denotes the error term covariance matrix of the \(m\):th mixture component, and \(\alpha_{m}\) is the mixing weight parameter. The \(W\) and \(\lambda_{mi}\) are structural parameters replacing the error term covariance matrices (see Virolainen, 2020). If \(M=1\), \(\alpha_{m}\) and \(\lambda_{mi}\) are dropped. If parametrization=="mean", just replace each \(\phi_{m,0}\) with regimewise mean \(\mu_{m}\). \(vec()\) is vectorization operator that stacks columns of a given matrix into a vector. \(vech()\) stacks columns of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector. The notation is in line with the cited article by Kalliovirta, Meitz and Saikkonen (2016) introducing the GMVAR model.

structural_pars

If NULL a reduced form model is considered. For structural model, should be a list containing the following elements:

  • W - a \((dxd)\) matrix with its entries imposing constraints on \(W\): NA indicating that the element is unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict negative sign constraint, and zero indicating that the element is constrained to zero.

  • C_lambda - a \((d(M-1) x r)\) constraint matrix that satisfies (\(\lambda\)\(_{2}\)\(,...,\) \(\lambda\)\(_{M}) =\) \(C_{\lambda} \gamma\) where \(\gamma\) is the new \((r x 1)\) parameter subject to which the model is estimated (similarly to AR parameter constraints). The entries of C_lambda must be either positive or zero. Ignore (or set to NULL) if the eigenvalues \(\lambda_{mi}\) should not be constrained.

See Virolainen (2020) for the conditions required to identify the shocks and for the B-matrix as well (it is \(W\) times a time-varying diagonal matrix with positive diagonal entries).

Value

Returns (unconstrained) "reduced form model" parameter vector.

Warning

No argument checks!

Details

If the structural parameter vector is a constrained one, use reform_constrained_pars first to remove the constraints.

References

  • Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.

  • Virolainen S. 2020. Structural Gaussian mixture vector autoregressive model. Unpublished working paper, available as arXiv:2007.04713.